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ACOUSTICAL NEWS—USA

Elaine Moran
Acoustical Society of America, Suite INO1, 2 Huntington Quadrangle, Melville, NY 11747-4502

Editor's Note: Readers of this Journal are encouraged to submit news items on awards, appointments, and other activities about
themselves or their colleagues. Deadline dates for news items and notices are 2 months prior to publication.

The 142nd Meeting of the Acoustical Society The Vern Knudsen Distinguished Lecture was presented by Anders
of America held in Ft. Lauderdale, Chr. Gade from Denmark on the topic “Acoustic concerns related to multi-

. cultural societies.”

Florida The Technical Committee on Signal Processing in Acoustics sponsored
The 142nd meeting of the Acoustical Society of America was held 3_72 serit_es of sessic_)ns on the_ theor_y and application. of time reversal anql the

December 2001 at the Ft. Lauderdale—Broward County Convention Cente‘pechn_lcal Committee on Biomedical Ultrasound/Bioresponse to Vibration

in Ft. Lauderdale, FL. Some events were also held at the Ft. Lauderdal@'9anized a one-day colloquium made up of two sessions on the topic of the

Marina Marriott Hotel. This was the first time the Society has met in this PNYSics of ultrasound in relation to the biology of its therapeutic effects.

city. These sessions were clusten_ed early in the week, creating a form of embed-
The meeting drew a total of 914 registrants, including 123 nonmem-ded symposium on each topic. Similarly, the technical committees on Un-

bers and 101 students. Attesting to the international ties of our organizatiorflerater Acoustics, Acoustical Oceanography, Noise, and Animal Bioacous-
94 of the registranté&hat is, about 10%were from outside North America. tics sponsored a series of five sessions on acoustics research in the ocean
There were 21 registrants from the United Kingdom, 17 from Japan, 152d the welfare of marine mammals. This important program brought to-
from France, 8 from Germany, 4 from Brazil, 3 each from Korea and Spain gether ocean scientists and animal rights activists for useful and amicable
2 each from Denmark, New Zealand, Poland, Peru, Sweden, and Tobaggz(chan_ges. _It culminated in a pa_lnel discussion chaired by the Society’s
and 1 each from China, Finland, India, Israel, The Netherlands, Norway=X€cutive Director, Chgrle.s Schmid. _ ‘
Russia, Singapore, Switzerland, Trinidad, and Venezuela. North American ~ The plenary session included the presentation of awards and a prize.
countries, the United States, Canada, and Mexico, accounted for 782, 34he Medwin Prize in Acoustical Oceanography was presented to Timothy
and 4 registrants, respectively. G. Leighton “for the effective use of sound in the discovery and understand-
Atotal of 682 papers, organized into 84 sessions, covered the areas d:ﬂg of physical ar_ld biological parameter_s and processes in the sea.” Earlier
interest of all 13 Technical Committees. The meeting also included 12 meeth the day Dr. Leighton gave the Acoustical Oceanography Lecture, as part

ings dealing with standards. The Monday evening tutorial lecture series wa@f the prize prograntsee Fig. 1

continued by Tony F. W. Embleton, formerly of the National Research Three science writing awards were presented. The 2000 Science Writ-
Council of Canada. His tutorial “Noise Propagation and Prediction Out-ing Award in Acoustics for a Journalist was presented to Graham Lawton for
doors” was presented to an audience of about 75. his article “They’re Playing My Song,” which appeared in New Scientist

The equipment exhibit drew about ten exhibitors, and an exhibit openimagazine, 9 September 2000. The 2000 Science Writing Award for Profes-
ing reception was held on Monday evening. The number of exhibitors wagionals in Acoustics was presented to co-winners Thomas D. Rossing for his
fewer than usual due to current economic conditions and unfavorable timin§0ook The Science of Musical Instrumertsd to Colin Gough for his article
of other conventions. Other events included the two social hours held onThe Science of the Stradivarius,” which appearedRhysics WorldApril
Tuesday and Thursday, luncheons for students in various areas of acousti@00 (see Fig. 2
and a Fellows Lounge which was arranged in lieu of a Fellows Luncheon. The Silver Medal in Engineering Acoustics was presented to llene
These events provided the settings for participants to meet in relaxed seBusch-Vishniac of Johns Hopkins University “for development of novel
tings to encourage social exchange and informal discussions. The Women #lectret microphones and of precision micro-electro-mechanical sensors and
Acoustics Luncheon was held on Tuesday afternoon and was attended tppsitioners.” llene was introduced by Tony Emblet@ee Fig. 3.
over 60 people. Election of 13 persons to Fellow grade was announced and fellowship

A special fundraising dinner was sponsored by the Acoustical Societycertificates were presented. New fellows are: Shira L. Broschat, Rene
Foundation on Wednesday evening. The dinner was followed by a preserzausse, Pierre Divenyi, Mathias Fink, Anthony G. Galaitis, Paul C. Hines,
tation by Sebastian Junger, authorTdfe Perfect Stornand Fire, who re- Anatoliy N. Ivakin, Jerry G. Lilly, Chaslav V. Pavlovic, Allan G. Piersol,
cently returned from a news assignment in Afghanistan. All proceeds werdhmet Selamet, Michael Taroudakis, and William A. Watki{sse Fig. 4.
added to the Foundation’s endowment. Mr. Junger is the son of ASA Fellow The President expressed the Society’s thanks to the Local Committee
Miguel Junger. Miguel himself was the subject of a celebration session heldor the excellent execution of the meeting, which clearly evidenced meticu-
earlier that day and sponsored by five technical committees. lous planning. He introduced the Chair of the Meeting, Joseph M. Cuschieri

FIG. 1. ASA President William Hartmann(n) presents the Medwin Prize in  FIG. 2. Science Writing Award winners Graham Lawton, Colin Gough and
Acoustical Oceanography to Timothy G. Leight@b). Tom Rossing(l-r).
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(see Fig. 5 who acknowledged the contributions of the members of his
committee including: Stewart A. L. Glegg, Technical Program Chair; Robert
Coulson, Audio-Visual; Pierre Beaujean, Hotel/Facilities; Natasha Walker,
Signs; Janette Garcia, Accompanying Persons Program. He also extended
thanks to the members of the Technical Program Organizing Committee:
Stewart A. L. Glegg, Technical Program Chair; David Palmer and Michael
Brown, Acoustical Oceanography; Joseph E. Blue, Edward Gerstein, and
David Mann, Animal Bioacoustics; Lily Wang, Architectural Acoustics;
Subha Maruvada, Biomedical Ultrasound/Bioresponse to Vibration; James
Cottingham, Education in Acoustics and Musical Acoustics; Elizabeth
McLaughlin, Engineering Acoustics; Mahlon D. Burkhard, Noise; Kerry
Commander, Physical Acoustics; Richard M. Stern, Psychological and
Physiological Acoustics; David Chambers, Signal Processing in Acoustics;
Betty Tuller and Gautam Vallabha, Speech Communication; Courtney Bur-
roughs, Structural Acoustics and Vibration; and Ellen Livingston and John
Perkins, Underwater Acoustics.

WILLIAM M. HARTMANN
President 20032002

FIG. 3. ASA President William Hartmanfl) congratulates llene Busch-
Vishniac, recipient of the 2001 Silver Medal in Engineering Acoustics. USA Meetings Calendar

Listed below is a summary of meetings related to acoustics to be held
in the U.S. in the near future. The month/year notation refers to the issue in
which a complete meeting announcement appeared.

2002

3-7 June 143rd Meeting of the Acoustical Society of America,
Pittsburgh, PA[Acoustical Society of America, Suite
1NO1, 2 Huntington Quadrangle, Melville, NY 11747-
4502; Tel.: 516-576-2360; Fax: 516-576-2377; E-mail:
asa@aip.org;WWW:asa.aip.grg

19-21 Aug. INTER-NOISE 2002, Dearborn, MINTER-NOISE
02 Secretariat, The Ohio State University, Department
of Mechanical Engineering, 206 West 18th Ave.,

Columbus, OH 43210-1107; E-mail:
hp@internoise2002.0tg
2—-6 Dec. Joint Meeting: 144th Meeting of the Acoustical Society

of America, 3rd Iberoamerican Congress on Acoustics,
and 9th Mexican Congress on Acoustics, Cancun,

) ) . Mexico [Acoustical Society of America, Suite INOL1, 2
FIG. 4. Newly elected ASA Fellows with ASA Vice President Janet Weisen- Huntington Quadrangle, Melville, NY 11747-4502;

berger and President William Hartmafg) at the Plenary Session. Tel.. 516-576-2360; Fax: 516-576-2377; E-mail:
asa@aip.org; WWW: asa.aip.org/cancun.fiml

2003

28 April-2 May  145th Meeting of the Acoustical Society of America,
Nashville, TN [Acoustical Society of America, Suite
1INO1, 2 Huntington Quadrangle, Melville, NY 11747-
4502; Tel.: 516-576-2360; Fax: 516-576-2377; E-mail:
asa@aip.org; WWW: asa.aip.drg

10-14 Nov. 146th Meeting of the Acoustical Society of America,
Austin, TX [Acoustical Society of America, Suite
1NO1, 2 Huntington Quadrangle, Melville, NY 11747-
4502; Tel.: 516-576-2360; Fax: 516-576-2377; E-mail:
asa@aip.org; WWW:asa.aip.qrg

2004

24-28 May 75th Anniversary Meeting147th Meeting of the
Acoustical Society of America, New York, NjAcous-
tical Society of America, Suite 1INO1, 2 Huntington
Quadrangle, Melville, NY 11747-4502; Tel.: 516-576-
2360; Fax: 516-576-2377; E-mail: asa@aip.org;
WWW: asa.aip.orgy

13-20 Now. 148th Meeting of the Acoustical Society of America,
San Diego, CAAcoustical Society of America, Suite
1INO1, 2 Huntington Quadrangle, Melville, NY 11747-

FIG. 5. ASA President William Hartmann congratulates Joseph Cuschieri, 4502; Tel.: 516-576-2360; Fax: 516-576-2377; E-mail:

General Chair of the meeting, on a well-organized meeting. asa@aip.org; WWW: asa.aip.drg
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Cumulative Indexes to the Journal of the Volumes 36-44, 1964-1968: JASA and Patents. Classified by subject and

: : : indexed by author and inventor. Pp. 485. Out of print.
Acoustical SOCIety of America Volumes 36-44, 1964-1968: Contemporary Literature. Classified by sub-

Ordering information: Orders must be paid by check or money order inject and indexed by author. Pp. 1060. Out of print.
U.S. funds drawn on a U.S. bank or by Mastercard, Visa, or AmericanvVolumes 45-54, 1969-1973: JASA and Patents. Classified by subject and
Express credit cards. Send orders to Circulation and Fulfillment Divisionindexed by author and inventor. Pp. 540. Price: $@@perbouny ASA
American Institute of Physics, Suite INO1, 2 Huntington Quadrangle,members $25clothbound; Nonmembers $6Qclothbound.
Melville, NY 11747-4502; Tel.: 516-576-2270. Non-U.S. orders add $11 perVolumes 55-64, 1974-1978: JASA and Patents. Classified by subject and
index. indexed by author and inventor. Pp. 816. Price: $g@perbouny ASA
Some indexes are out of print as noted below. members $2%clothbound; Nonmembers $60clothbound.
Volumes 1-10, 1929-1938: JASA and Contemporary Literature, 1937— Volumes 65-74, 1979-1983: JASA and Patents. Classified by subject and
1939. Classified by subject and indexed by author. Pp. 131. Price: ASAndexed by author and inventor. Pp. 624. Price: ASA members(#2per-
members $5; Nonmembers $10. bound; Nonmembers $7%clothbound.
Volumes 11-20, 1939-1948: JASA, Contemporary Literature, and Patents. Volumes 75-84, 1984-1988: JASA and Patents. Classified by subject and
Classified by subject and indexed by author and inventor. Pp. 395. Out ahdexed by author and inventor. Pp. 625. Price: ASA members($&per-
print. bound; Nonmembers $80clothbound.
Volumes 21-30, 1949-1958: JASA, Contemporary Literature, and Patents. Volumes 85-94, 1989-1993: JASA and Patents. Classified by subject and
Classified by subject and indexed by author and inventor. Pp. 952. Pricandexed by author and inventor. Pp. 736. Price: ASA members(g$&per-
ASA members $20; Nonmembers $75. bound; Nonmembers $8Qclothbound.
Volumes 3135, 1953-1963: JASA, Contemporary Literature, and Patents. Volumes 95-104, 1994-1998: JASA and Patents. Classified by subject and
Classified by subject and indexed by author and inventor. Pp. 1140. Pricendexed by author and inventor. Pp. 632. Price: ASA members(gdper-
ASA members $20; Nonmembers $90. bound; Nonmembers $90clothbound.
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REPORTS OF RELATED MEETINGS

This Journal department provides concise reports of meetings that have been held by other
organizations concerned with acoustical subjects; and of meetings co-sponsored by the Acoustical
Society but planned primarily by other co-sponsors.

’ i 1 fessor in communications at DePauw University. Of course, there was ample
NHCA's 27th Annual Hearing Conservation
Conference time to visit and socialize during the exhibitor receptions and the live auc-

tion, at which a fun time was had by all.

On 21-23 February 2002 in Dallas, TX, the National Hearing Conser- The lectures covered topics such as a discussion by Bob Dobie on how
vation Association(NHCA) held its 27th Annual Hearing Conservation changes in audiometric configuration help determine whether a standard
Conference, chaired by ASA member Mary McDaniel, Vice President ofthreshold shift is work-related, an interesting presentation by Beth Cooper
NHCA. This year, as it was three times in the past, the Acoustical Society otind Dick Danielson on hearing conservation for the international space sta-
America was a conference affiliate. Daniel L. Johnson, Standards Directotion, an exciting point—counterpoint session by Elliott Berger of EAR and
and Susan Blaeser, Standards Secretariat, represented ASA at the exhilfitan Gauger of Bose discussing when active noise reduction is useful for
and other functions. hearing protection technology and when it is not, augmented by auditory

The conference, attended by approximately 260 hearing conservatiogemonstrations of actual hearing protector attenuation characteristics, and an
professionals, included four concurrent half-day workshops from which atimportant paper by Jennifer Tufts on the effect of wearing hearing protectors
tendees could select two. The workshops covered the epidemiology of noisgh the production of speech in noise. The posters were equally as varied,
induced hearing loss including oxidative mechanisms, and pharmacologigoyering issues like probe microphone measurements of hearing protector
protective agents, workers’ compensation, tinnitus, and metrics for evaluatperformance, an unusual paper entitled “It if sounds ‘delicious’ it might be
ing hearing conservation programs, and an all-day beginner's seminar on thg, |o,d," and the fun, motivational efforts of Deanna Meinke, James Lank-
basics of hearing loss prevention. The program, diverse as usual, began wi rd. and Laurie Wells related to the collection of favorite sounds.

a retrospective lecture by Alice S_uter on little-known things th_at_ happened Long-time NHCA contributor and Past President, Merlyn Lubiens, re-
Zlon% thedwaydgs ()ISHAOC((:jupaponaI Helal_th and Sdafety ﬁdmlnlstrgﬁgn .ceived the gratitude of the organization when he was presented the Michael
eveloped and implemented noise regulations, and on the second day 'Beall Threadgill Award for Outstanding Leadership and Service to NHCA.

cluded the second installment of the Don Gasaway Lecture, delivered by Loose-leaf proceedings are available from the NHCA Executive Of-

Ted Madison, on the toplg of communicating the value of hearmg. Othelr_q.Ces in Denver, CQ1303-224-9022, email nhca@gwami.corand abstracts
aspects of the broad-ranging program were an encore presentation of NH-

CAs practual popupsshar, 0minte 0ot presenatinaie S P8 MEVEO on the NHCA it f iy arngoonsentong e
posters, two forums, a series of round-table breakfast discussions, and u 9 -

number of allied committee and ANSI working group meetings. The |un_Faebruary 2008.
cheon lecture, “Orality and Literacy,” was delivered by Kent Menzel, a pro- ELLIOTT H. BERGER

J. Acoust. Soc. Am. 111 (5), Pt. 1, May 2002  0001-4966/2002/111(5)/1961/1/$19.00 © 2002 Acoustical Society of America 1961
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BOOK REVIEWS

P. L. Marston
Physics Department, Washington State University, Pullman, Washington 99164

These reviews of books and other forms of information express the opinions of the individual reviewers
and are not necessarily endorsed by the Editorial Board of this Journal.

Editorial Policy: If there is a negative review, the author of the book will be given a chance to respond to
the review in this section of the Journal and the reviewer will be allowed to respond to the author’s
comments. [See “Book Reviews Editor’s Note,” J. Acoust. Soc. Am. 81, 1651 (May 1987).]

Handbook of Multimodal and Spoken “language framework” for multimodal commynication: This implies §oﬁ-

. . ware agents that can fuse simultaneous multisensory inputs to madones
D|a|09ue SyStemS: Resources, Termmomgy example, “Move this to there"—signaled by speech, manual gesture, and
and Product Evaluation possibly visual confirmationA multimodal language framework, similar to

that developed over many years for spoken language, would enable multi-
Dafydd Gibbon, Inge Mertins, and Roger Moore, modal parsing and application of semantic analysis and contextual
Editors constraints—all aimed at providing the machine a reliable estimate of user

intent, along with input to dialog generation modules that produce a text-to-
synthetic voice response.
A good part of the book familiarizes the reader with database resources
This is not a traditional book review—because this is not a traditionalthat may be widely helpful—as well as with best practices for their use.
technical text. It is titled a Handbook, and in every sense it is that. OneAnd, it has a glossary appended for the many, many abbreviations that are
seldom reads such from front cover to back, and neither have I. Rather Wsed throughout. This does not always suffice tho(egten in a book de-
have perused the volume, concentrating mainly on topics of personal inteioted to terminology, and the reader should be prepared for some esoteric
est, to savor the rich mixture of views and data provided. (if not intimidating verbiage. Exposition of the EAGLET Term Databank
The Editorial Preface well sets the context for the document. It ad-provides a samplé. 271: “In order to take the Scylla of heterogeneity in
dresses Language Technologies—with the aim of providing best practicehie field of SL terminology into account, and avoid, on the other hand, the
for evaluating products, for applying language terminology, for conductingCharybdis of completelyad hochybrid description, a new approach is pro-
research on multimodal and audiovisual systems, and for utilizing databaseosed which combines the traditional semasiological and onomasiological
resources. It constitutes a large compendium, based primarily on Europea@pproaches to terminology characterizatiofete.”
research. For this reason it will be particularly valuable to researchers who ~ Discharging the implicit obligation of a reviewer to nit-pick, other
have limited exposure to work in Europe. minor annoyances can be cited. The physical realization might be better.
The document is the product of an activity funded by the EuropeanMost of the text is relatively small forfan estimate is 9 point Times New
Union to promote the use of standards in spoken language processing, teXtoman and lightly, or delicately, printed. Section headings are not particu-
and terminology—conducted under the aegis of the multinational Exper{arly emphasized, and do not stand out as they might if bold font were used.
Advisory Group on Language Engineering Standa@8GLES). It lists Further on the side of verbosity, discussions that belabor some controversial
some 20 scientists as “Main Technical Authors,” along with acknowledg- Views—such as distinguishing the terms “multimodal” and “multimedia”
ments to a comprehensive list of collaborators across European labs, univeR- 109—become a bit wearisome. But none of these things detract from the

Kluwer Academic Publishing, The Netherlands. 2000.
Price: $175.00 (hardcover) ISBN: 0792379047.

sities, institutes, and companies. The editors, Dafydd GiliboBielefeld, ~ scientific value—they just place a small burden on the reaied might
Inge Mertins(U. Bielefeld, and Roger MoordDERA and 20/20 Speech ~@ven stimulate resolve in the serious stuglent
Limited), are also contributors and key participants in EAGLES projects. Again, the Handbook is perhaps not a traditional ¢segy, where one

The book is dedicated to Dr. Christian Bénmne of the lead technical looks up the speed of sound in esoteric mgdiat it provides definitions,

contributors and a cherished colleague, who died before the project conférminology, delineations of research, and extensive pointers to significant
pleted. work, especially that of the European community. Its attention to “product

Although “Multimodal” appears first in the title, most of the book and service_gvaluation“ appropriately focuses on te_zchniques and procedures,
focuses on spoken language. As conversational interfaces have advanc&@ton specific products or manufacturers. The main body of text runs to 327
automatic speech recognizers and large speech databaiseswhich to pp._The extensive Blbllographl_cal Referenges and Appendices f|I_I the re-
train statistical classifiers favored in current desjghave almost become ~Mainder of the 519 pp. total. It is accompanied by a CD-ROM version with
commodities. Speech understanding and dialog design have not. The lattBr disclaimer refative to support and warranty. The book is offered as a
represent major research frontiers. Even speech recognizers continue §gMPanion to the earligdandbook of Standards and Resources for Spoken
present substantial challenges on two frort:in elevating recognition Language SysteniSibbonet al, 1997, prod.uced alsp under t'he EU aegis.
accuracy for spontaneous speetypical of interactive exchanges, which This reviewer does not know the companion, but is herewith prompted to
often are nongrammaticaland ii) in reducing the onerousnd expensive ~ Seek it

training of classifiers by exposing them to vast amounts of target speech. In. In sum, t‘he European c_ommunlty, and espec‘|a||y the editors and_ con-
both areas of research—understanding and recognition—this Handbook h rébutors for this comprehensive volume, have provided a valuable service to

much to contribute. And in both these areas, a continuing focus is to builc] € scientific academy in this compilation. | doubt that | would ask each of

solutions rapidly and economically as the application tasks and the lan. graduate students to obtain a copy, but | am certainly glad we have one
guages change. in the lab. The book seems to be an excellent exemplar of the burgeoning

As a personal bias, | would have liked more in the book on Multimo- spirit of cooperation across Europe—a spirit not limited solely tp science,
and a model that may eventually pervade the global community. Finally,

dal techniques. This area has not been researched nearly as intensely gs A : . .
s ) L . . those of us who are very poor linguists appreciate the choice of English for
speech recognition. It is becoming increasingly important, as the push befhe publication

comes stronger to transcend mouse and keyboard interfaces and achieve
more natural communication with machingsrticularly employing the si-  JIM FLANAGAN

multaneous sensory modes of sight, sound, and jouchaddition to the  Center for Advanced Information Processing
need for new interface devices and transducers for sensory modes, a cl€autgers University

challenge that should attract the proponents of this book is the need for Riscataway, New Jersey 08854-8088
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6,305,233

43.20.Mv DIGITAL SPEED DETERMINATION IN
ULTRASONIC FLOW MEASUREMENTS

Colin Walter Braathen et al, assignors to Commonwealth
Scientific and Industrial Research Organisation; AGL
Consultancy Pty Limited

23 October 2001(Class 73861.29; filed in Australia 19 October
1995

A method is disclosed for determining flow velocity in a tube using a
transmit/receive pair. A reference pulse packet is received by a receiver and
digitized. Several segments of the digitized signal are then analyzed on their
slopes in order to identify and match the received signal with a copy of the
transmitted signal. The matching allows determination of signal travel time
and other information upon comparison of selected features in the sent/
received signals.—IMH

6,311,573

43.20.Rz ULTRASONIC TRANSDUCER FOR HIGH
TRANSDUCTION IN GASES AND METHOD

FOR NON-CONTACT ULTRASOUND
TRANSMISSION INTO SOLID MATERIALS

Mahesh C. Bhardwaj, Boalsburg, Pennsylvania

6 November 2001(Class 73866.9; filed 19 June 1997

This efficient transducer system for use with gaseous media uses an
active transducer having a polymer facing layer to which a final fibrous
layer is bonded. The fibrous layer may be made of wood, cotton, fabric, felt,
etc. Care is given not to allow the bonding agent to penetrate too deeply into
the fibrous layer to avoid destroying its open fiber qualities.—IMH

6,307,810

43.28.Tc UNDERWATER LAUNCHED ACOUSTIC
WARNING ASSEMBLY

Ofir Shany et al, assignors to Rafael-Armanent Development
Authority Limited
23 October 2001(Class 367131); filed in Israel 31 August 1998

A floatable transceiver assembly is described, launchable from an un-
derwater vehicle, used to monitor air-borne sounds, and, in turn, to relay
them to the underwater vehicle. With reference to the figure, which is a

J. Acoust. Soc. Am. 111 (5), Pt. 1, May 2002
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partial cross-sectional view, the cylindrical hous®gysupports at its upper 6,302,857
end a microphon@2. Element25is a windscreen while coveéd4 is ejected
after the upper portion of the unit has surfaced. RBgetard the amount  43.35.Wa METHOD AND APPARATUS FOR
the unit will broach the surface after launch. Communciation with the | OWERING AUDIBLE NOISE EMISSIONS FROM
:};Jhnocuh vehicle can‘be‘ via wire linR6 which is payegi_ out from spo@0, (Ii.lTHOTRlF’TORS
gh an acoustic link is also suggested. In addition to power supply an
necessary electronics, the unit also houses a self-destruction mechanism. ) . )
The underwater vehicle contains the necessary equipment for receiving the Vince Landeck, St. Charles, M'?SOU”
. . ! . 16 October 2001(Class 6014); filed 2 June 2000
signals from the transceiver assembly and for identifying the source of the
original airborne sound, e.g., a helicopter, by matching with prerecorded Lithotriptors are external medical and therapeutic devices used to dis-
signatures.—WT integrate concretion@.g., kidney stongsnduce bone growth, and treat soft
tissues. These devices operate by producing focused acoustic shock waves,
6,304,514 capable of generating extremely high-pressure differentials at localized re-
gions within a patient’s body, that act upon targeted concretions or body

43.30.Gv ULTRASONIC MEASURING DEVICE WITH tissue being treated. Noise is naturally generated by the generation of shock

TRANSMITTERS AND RECEIVERS FOR waves, and the patent describes a noise attenuator in the form of a noise-
damping shroud that is configured to surround the generator of a lithotriptor.
LOCATING THE GEOMETRIC POSITION OF THE The shroud consists of an insulating body and a cover. The insulating body
BORDER BETWEEN A FIRST AND SECOND consists of sound-damping insulation that is configured to enclose all of the
MATERIAL FROM A REFERENCE LOCATION housing that typically encases the generator of the lithotriptor. The cover is

generally a thin pliant material surrounding the insulating body.—DRR
Torsten Schulze, assignor to Theyson GmbH
16 October 2001(Class 36799); filed in Germany 20 September 6,312,402
1997
43.35.Wa ULTRASOUND CATHETER FOR

IMPROVING BLOOD FLOW TO THE HEART

Of interest to those using transmit-receive/pulse-echo techniques to . .
determine the thickness of a material or the location of a defect, this patent ~ Pouglas R. Hansmann, assignor to Ekos Corporation
is directed to a technique for receiving an echo from a far interface of a ~ © November 2001(Class 60422); filed 24 September 1998
material and subtracting this signal from the corresponding echo received  The purpose of this ultrasonic catheter is multifold: it is intended to
from the near interface of the material. The time difference between risémprove the blood flow to a patient’s heart, to create revascularization chan-
times is taken, identifying the travel time of the pulse through the material.nels in a patient’s heart, and to provide an energy source which in combi-
The patent might carry the influence of a German parent, as it contains justation with a medicament stimulates angiogenesis in the heart. The catheter
one claim(drawn to the apparatjand the Detailed Description is all of two  has an elongated catheter body with a proximal end and a distal end, thus

paragraphs long.—IMH constituting a catheter lumen. The elongated catheter body incorporates an

introducer distal portion with a tissue-piecing distal end. An ultrasound
6,304,513 transducer is positioned in the introducer distal portion.—DRR

43.30.Wi METHOD FOR CORRECTING EFFECTS 6,309,355

OF AN ANTENNA INTERFERING MOVEMENTS

IN A SONAR WITH SYNTHETIC ANTENNA 43.35.Wa METHOD AND ASSEMBLY FOR
PERFORMING ULTRASOUND SURGERY USING

Didier Billon, assignor to Thomson Marconi Sonar S.A.S. CAVITATION

16 October 2001(Class 36789); filed in France 7 October 1997

Charles A. Cain and J. Brian Fowlkes, assignors to The Regents of
the University of Michigan

A method is discussed for obviating the negative effects upon the S0 October 2001(Class 608439); filed 22 December 1998
localization ability of a synthetic sonar array caused by spurious motions of This is a method for using an ultrasonic beam to generate a controlled
the axially oriented, submarine-mounted, sonar array. These corrections asergical lesion in a selected treatment volume within a patient. First, mul-
achieved by cross correlating successive signals and by using informatiotiple microbubbles are created in the treatment volume. Preferably, the
about the roll of the array obtained from a rate gyro and about the angle ofhreshold for cavitation of microbubbles should be below the cavitation
elevation of the received signal determined from a small auxiliary array

mounted perpendicularly to the primary array.—WT %6

6,310,830

43.30.Wi ENVIRONMENTALLY ADAPTIVE SONAR
SYSTEM

A
Henry M. Gruen, assignor to Northrop Grumman Corporation
30 October 2001(Class 36788); filed 7 April 2000 CONTROLLER

RECEIVER PHASE DETECTION

SUBSYSTEM

\34

Improved detection and classification of targets in shallow waters is
said to be realized by adaptively modifying the vertical beamwidth of the
receive beam of a sonar system as a function of water depth, altitude of the
sonar, and range to the target. This madification is accomplished by dynami-
cally controlling the number of active elements in the hydrophone
array.—WT

1964 J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002 Reviews of Acoustical Patents
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threshold for the surrounding tissues. The expected location of the surgicaPressure changes, in turn, affect the reflectivity of microbubbles after intra-
lesion may be previewed before the microbubbles are cavitated with th@enous injection of a contrast agent. Such microbubbles can, e.g., increase
ultrasound to create the controlled surgical lesion. The creation of the suthe backscatter from blood. The nonlinear properties of these microbubbles
gical lesion can then be verified. It is claimed that the cavitation threshold ignay be utilized to create new harmonic and subharmonic modalities.—DRR
predictable and that a low-frequency ultrasound beam may be used to cavi-

tate the microbubbles without causing damage to the surrounding tissues.—

DRR

6,302,845

43.35.Yb METHOD AND SYSTEM FOR PRESSURE
ESTIMATION USING SUBHARMONIC SIGNALS
FROM MICROBUBBLE-BASED ULTRASOUND
CONTRAST AGENTS

William Tao Shi et al, assignors to Thomas Jefferson University
16 October 2001(Class 600438); filed 20 March 1998

The object of the methodology described here is to provide a direct

noninvasive measurement of hydrostatic pressure inside the heart, in oth
organs, and in major blood vessels. The system uses ultrasound contra;

agents containing microbubbles to achieve noninvasive subharmonic=
aidedpressure estimation in the cavities of the heart, organs, and principgf

blood vessels. Some contrast agents are particularly well suited for pressu

measurements because their substantial compressibility enables the mi-
crobubbles to vary appreciably in size in response to changes in pressure

Steel Plate
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Transducer

Transducers
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Transducers
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6,306,091

43.35.Yb DIAGNOSTIC MEDICAL ULTRASOUND
SYSTEMS AND METHODS UTILIZING
ESTIMATION OF 3-DIMENSIONAL RIGID BODY
TRANSFORMATION

Thilaka S. Sumanaweera and John A. Hossack, assignors to
Acuson Corporation
23 October 2001(Class 600443); filed 6 August 1999

e The patent refers to medical diagnostic systems and methods capable
85 constructing three-dimensional images from disjoint two- or three-

dimensional image data sets of humans or animals. More specifically, the
ethod entails ultrasound systems that provide accurate three-dimensional
;gconstruction between any two ultrasonic data sets acquired by translating

X =ELEVATION

™ Y=AZIMUTH

J
Z=RANGE

or rotating a transducer along one or more of the six degrees of freedom. In
various embodiments, either quaternions or orthonormal matrices are used
to execute the affine transformation. It is claimed that the resultant three-
dimensional reconstructions are rendered more quickly with greater accu-
racy and with less deformation or skewedness.—DRR

6,306,093

43.35.Yb METHOD AND SYSTEM FOR
ULTRASOUND ENHANCED-RESOLUTION
SPECTRAL DOPPLER

John S. Wang, assignor to Acuson Corporation
23 October 2001(Class 600454); filed 22 May 1997

This method and system is claimed to provide an efficient method for
processing and displaying various ultrasound data. In one embodiment, a
method for generating data for a spectral Doppler strip in an ultrasound
system is provided. A beam-former provides Doppler data to a signal

Reviews of Acoustical Patents 1965
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43.35.Yb MEDICAL DIAGNOSTIC ULTRASOUND
SYSTEM AND METHOD FOR IMPROVED
FLOW OR MOVEMENT DETECTION WITH
MULTIPLE CLUTTER FILTERS

data. The frame of imaging data contains EKG data in a line of information.
Additional EKG data may be provided separately from the imaging data. A
scan converter processes both the EKG data and imaging data at virtually
the same time, maintaining temporal accuracy. The EKG data provided con-
stitutes an entire trace so that the trace on the display appears to be smoothly
updated.—DRR

Ismayil M. Guracar and Patrick J. Phillips, assignors to Acuson
Corporation
30 October 2001(Class 60@454); filed 9 August 1999

Ultrasound systems image blood flow and tissue movement using cor-
relation or Doppler techniques. The flow or movement is represented by one
or more of various estimated parameters, such as energy, velocity, and/or
variance. Prior to the estimation of these parameters, a clutter filter may be
used to suppress undesired signals, such as those associated with reflections

6,312,382

CLUTTER-FILTER FREQUENCY RESPONSES

43.35.Yb METHOD AND APPARATUS FOR

10 T T T T A T T T
: EXTRACTING CARDIAC INFORMATION FROM
or ACOUSTIC INFORMATION ACQUIRED WITH AN
10+ ULTRASOUND DEVICE
-201° Ronald Mucci, Westwood, Massachusettst al.
6 November 2001(Class 600437); filed 15 November 1999
-30F

dB : ‘PASS 1FILTER: (0.201-0.332-0.154 0.266 0315-0147-0361 0.213} The patent pertains to ultrasound imaging, and, more patrticularly, to an
401 pass 3 PLTER: (0.342-0.863 0.600 0,089~ 0.37) apparatus for processing acoustic information from an ultrasonic device for
. monitoring cardiac information, such as a patient’s heart rate. An ultrasonic
Y R R R A A system is applied to image a patient’s heart in order to obtain cardiac infor-
- | mation. The acoustic information is converted into electrical signals. These
-70F" . . -
: 30
- ] i ] I ] ] ! ! I Tl
0 005 Ol o0i5 02 025 03 035 04 045 05
FRAC. OF SAMPLE FREQ
of ultrasonic energy from stationary or slow-moving tissue. In the system
described in this ggtent more tharr): one clutter filtgr is used. Each yclutter DATA ENVELOPE LINE
) » M nar ) | ACQUISITION |—» DETECTION » EXTRACTION
filter’s frequency response is optimized differently. Estimates of the flow or 31 33 35
movement are generated from the output of the clutter filters. Using selec-
tion or combination of the resulting estimates, the best attributes of each
filter are used to produce images.—DRR
6,312,381
TIME-SERIES SPECTRAL FEATURE
43.35.Yb MEDICAL DIAGNOSTIC ULTRASOUND GENERATION —»  ANALYSIS [—#~ ESTIMATION - CARDIAC
SYSTEM AND METHOD = ® u INFORMATION

Christopher B. Knell et al, assignors to Acuson Corporation
6 November 2001(Class 609437); filed 14 September 1999

are used to generate a time series of image frames which are analyzed by
Fourier analysis to determine the fundamental frequency corresponding to

This patent, saddled with a most unspecific title, deals with a systenthe patient's heart rate. While it seems that this is a rather elaborate way of
for providing temporally accurate EKG data linked to ultrasonic imaging measuring the heart rate, which can be done by feeling a pulse or utilizing a

1966 J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002
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43.38.Ja ELECTROACOUSTIC TRANSDUCER WITH
IMPROVED TONAL QUALITY

stethoscope, it may be possible that other embodiments of this apparatus can 6,298,140
be used to extract additional information on the cardiac status.—DRR

Christos Manavopoulos, Refina Attika, Greece
6,312,383 2 October 2001(Class 381152); filed 20 February 1998

43.35.Yb DUAL BAND ULTRASONIC SYSTEMS This patent pertains to flat-panel loudspeakers composed of arrange-

ments of active elements suspended in baffles. Openings in the baffles per-
Frederic Louis Lizzi and Cheri Xiaoyu Deng, assignors to  mit some of the radiation from the backs of some elements to cancel par-
Riverside Research Institute tially the radiation from the fronts of the elements, smoothing the frequency
6 November 2001(Class 600437); filed 26 May 1998 response of the system. Asymmetry and nonuniform driving of the active
This patent describes a hand-held device that measures blood floglements increase the number of excited modes, further smoothing the radi-
rate and perfusion through the use of an ultrasound contrast. The deviced spectrum.—EEU
includes a source that generates a focused pulse of ultrasound energy at a
frequency and magnitude sufficient to modify the contrast agent particles in
a target area in the tissue region. A second ultrasound signal is at a

[ 6,292,573

CONTROLLER 43.38.Ja PORTABLE COMMUNICATION DEVICE
WITH COLLAPSIBLE SPEAKER ENCLOSURE

114

108
_\ Robert A. Zurek et al,, assignors to Motorola, Incorporated

HIGH-PRESSURE DIAGNOSTIC 18 September 200X Class 381386); filed 30 September 1999

EXCITATION UNIT T eoucER

A number of earlier patents describe nesting or telescoping loud-
speaker enclosures. This invention is a variant intended specifically for
use in very small, portable communication systems. Several possible meth-
. ods of achieving a good air seal are suggested, but it is more than likely

112

frequency and magnitude which do not substantially modify the contrast

agent. A controller operates the source to determine an initial measurement
of the contrast agent in the target area, to modify the contrast agent, and to
monitor the level of the contrast agent. The processor calculates the timéat substantial air leaks will develop after repeated opening and closing. A
required to restore the contrast agent level to the initial level and establishegractical alternative might be to incorporate controlled resistive leakage cal-

a perfusion rate therefrom.—DRR culated to smooth the response of a typical small, underdamped speaker.—
GLA
6,298,141
43.38.Ja METHOD AND APPARATUS FOR AUDIO 6,298,943
BASS ENHANCEMENT IN AN ELECTRONIC

DEVICE 43.38.Ja BASS-REFLEX SPEAKER ASSEMBLY

Scott N. Hickman, assignor to Hewlett-Packard Company Katsuhisa Yamada et al, assignors to Honda Giken Kogyo

2 October 2001(Class 381333); filed 30 October 1997 Kabushiki Kaisha o
) ) ) ) ) 9 October 2001(Class 181156); filed in Japan 1 December 1998
Using vibrations in the housing of a portable computer to enhance

audio bass response is not a new idea. The interesting feature of this patent ~Large cruising motorcycles, such as the Honda Gold Wing, often in-
is its description of a miniature shaker motor used to generate the lowelude elaborate stereo systems. In this application, loudspeakers are exposed
frequency vibrations.—GLA to rain and fluctuating air pressure. By mounting each loudspeaker in a

J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002 Reviews of Acoustical Patents 1967
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vented enclosure, front and rear air pressures are equalized. Moreover, if
vent ductl5 is located as shown, it can also serve as a drain for any water

that finds its way inside.—GLA

6,309,490
43.38.Ja AIR ACTUATED ULTRASONIC TOOL
Shawn K. Davis and John Ablamsky, assignors to Branson

Ultrasonics Corporation
30 October 2001(Class 15673.3; filed 10 May 2000

An ultrasonic horn, e.g., for welding plastic parts, is combined with an
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6,301,034
43.38.Kb PULSED LASER MICROPHONE

John R. Speciale, Wonder Lake, Illinois
9 October 2001(Class 359151); filed 22 October 1997

Pulsed laser light is reflected from a moving diaphragm and focused
onto an optical receiver. According to the patent text, the modulated, pulsed
output can be converted directly to a digital audio signal by a simple com-
parator circuit. If desired, transmission and reception can both be conveyed
via fiber optic cable so that the microphone itself contains no active
elements.—GLA

6,297,695
43.38.Lc HIGH VOLUME EXPANDER CIRCUIT

Wayne M. Schott, assignor to U.S. Philips Corporation
2 October 2001(Class 330110); filed 16 September 1999

This might better be described as an unlimiter. The idea is to partially
undo the heavy audio limiting imposed on typical signals from AM radio,
VCR sound tracks, and the like. The gain of an opamp remains fixed until
the input signal exceeds a predetermined level, at which point it increases to
a second gain setting. The patent does not address the question of matching
the trigger level to a particular program source.—GLA

6,304,865

43.38.Md AUDIO DIAGNOSTIC SYSTEM AND
METHOD USING FREQUENCY SPECTRUM AND
NEURAL NETWORK

Alan K. Christensen and Christopher F. Broadbent, assignors to
Dell U.S.A., L.P.
16 October 2001(Class 70620); filed 27 October 1998

This patent describes a test setup for evaluating and calibrating com-
puter sound cards. A test signal is recorded by the sound card and then
played back into the test system. A Fourier transform of the reproduced

200 300
/350 /

w0/ |

signal is processed by a neural network trained to recognize any discrepancy
from the expected signal analysis.—DLR

6,296,926
43.38.Ne EMBOSSED SOUND TRACK
Stefan Huebner, Munich, Germany

2 October 2001(Class 428172); filed in Germany 18 August 1997

Talking greeting cards and cereal boxes rely on an embossed strip as
the recording medium—a kind of three-dimensional bar code. The patent
describes an improved recording material and method which “...permits

air-pressure controllable-force actuator to control the application of ultra-high reproduction quality, has sufficient life, is easy to handle, and can be

sound from the horn to the parts.—IMH

1968 J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002
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6,295,364 6,292,570
43.38.Si SIMPLIFIED COMMUNICATION SYSTEM 43.38.Vk SURROUND SOUND
Brian M. Finn et al, assignors to Digisonix, LLC Ronaldus M. Aarts, assignor to U.S. Philips Corporation
25 September 200X Class 381110); filed 30 March 1998 18 September 2001(Class 38118); filed in the European Patent

A live, two-way intercom connection between two acoustic spaces is Office 13 February 1998
subject to feedback in the audio loop. This patent does not address that  This patent addresses the problem of reproducing surround sound
issue, normally solved by limiting the live path to one side at a time, in whatthrough TV speakers or computer sound systems in which surround speakers
is known as a simplex system. However, if the spaces are acousticallare absent. Much of the previous work in this field makes use of interaural
coupled, feedback may still occur. For intended application between the&ancellation and/or pinnae filter simulation. The required circuitry is com-
front and back seat of a car, this system introduces high-pass and equalizglicated and the effective listening area is constricted. The inventors propose
tion filters in both microphone pathways. For the front-to-back path, thea much simpler approach in which the surround channel is divided into two
high-pass filter is dynamically adjusted by a control signal from the vehiclefrequency bands, “expanded,” and then recombined with the main left and

speedometer—DLR right channels.—GLA
6,301,367 6,289,735
43.38.Si WEARABLE AUDIO SYSTEM WITH 43.40.Le MACHINE DIAGNOSTIC SYSTEM AND
ACOUSTIC MODULES METHOD FOR VIBRATION ANALYSIS
James H. Boyden et al, assignors to Interval Research Carl J. Dister et al, assignors to Reliance Electric Technologies,
Corporation LLC
9 October 2001(Class 381376); filed 8 March 1995 18 September 200X Class 73579); filed 29 September 1998

This patent describes wearable earphones; that is, small loudspeakers A vibration sensor is attached to a dynamoelectric machine which is to
held in proximity to the user’s ears. Each module has an outlet port adjacerite monitored. The sensor signal is analyzed to obtain a frequency domain
to the ear and a vent port located far enough away to minimize low fre-vibration signature. The processor logic then scans this signature at several
quency cancellation. The inventors must have faith in their design becausearmonics of a known frequency associated with a machine component of
the final patent is a continuation in part of a continuation of a division of anconcern, such as a frequency associated with the balls in a bearing, and
application going back to 1995.—GLA compares the amplitudes of adjacent harmonics. The shape and magnitude

of the largest of a set of harmonics, thought to correspond to a resonance in
the transmission path between the machine component and the sensor, are
analyzed to evaluate the condition of the machine.—EEU

6,301,490
43.38.Si AUDIO HEADSET COMMUNICATION
APPARATUS AND METHOD 6,301,572
Edward William Callan, San Diego, California 43.40.Le NEURAL NETWORK BASED ANALYSIS
9 October 2001(Class 45%568); filed 12 June 1998 SYSTEM FOR VIBRATION ANALYSIS AND

Suppose that you are a switchboard operator or a dispatcher. Your joE:ONDITION MONITORING
requires simultaneous voice communication with two or more remote sta- . . . .
tions. If you wear a stereo headset, then person A can be heard in one ear Grégory A. Harrison, assignor to Lockheed Martin Corporation
and person B in the other. A number of existing systems are based on this 9 October 2001(Class 70€52); filed 2 December 1998

idea. The inventor has taken it several steps further, including gain shifting, In this system for long-term condition monitoring of machines, such as
distinctive voice-over audio signatures, and automatic microphonegas turbines, the time-domain output of a vibration sensor is transformed to
switching.—GLA the frequency domain using fast Fourier transform processing. The resulting

information is provided to a “fuzzy adaptive resonance theory” neural net-

work, which can detect patterns in a signal and which can be trained to

recognize signal characteristics or trends. The output can be presented on

display devices for presentation to an operator and can be made available for
6,304,654 other control and information purposes.—EEU

43.38.Si TELEPHONE HANDSET INTERFACE WITH
FEEDBACK CONTROL

Brian Albert Wittman, assignor to Lucent Technologies, 6,308,585
Incorporated
16 October 2001(Class 379387.09); filed 6 February 1996 43.40.Le METHOD AND A DEVICE FOR ATTACHING

ULTRASONIC TRANSDUCERS

Loss or gain are selectably applied to the receiving and the transmit-
ting portions of a telephone handset to reduce feedback problems. Accord- ) .
ingly, the microphone signal may have a loss applied when the user is 58 glltsstc))n egr(l)céi—fgan D?gé%%rg[ ?-Ts(ljgzgri tg Ultra ZS&?(;JS AB
listening at high receiver/speaker gain levels. The loss applied to the micro- ctober (Class -9; file ebruary
phone signal is then reduced when the user begins to speak.—IMH The patent describes a way of attaching transdué&so a wall
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6,295,871
43.40.Yq VIBRATION SENSING DEVICE

Jung-Tsung Wei, Tainan City, Taiwan, Province of China
2 October 2001(Class 73570); filed 30 May 2000

A small electrically conductive ball is suspended inside a conductive
spherical shell via a conductive thread that is attached at the tip of a rod,
which tip is at the center of the spherical shell. A second conductive ball is
free to roll inside the shell. The length of the thread and the diameters of the
balls are such that the balls just make contact with each other when the
spherical shell is undisturbed, so that electrical continuity is maintained.
Motion of the shell causes the balls to lose contact, interrupting the electrical
circuit. The spherical geometry apparently permits this sensor to work over
a wide range of angles from the vertical. —EEU

6,305,226

43.58.Ls METHOD AND APPARATUS FOR
IMAGING ACOUSTIC FIELDS IN HIGH-FREQUENCY
ACOUSTIC RESONATORS

85
Bradley Paul Barber et al, assignors to Agere Systems Guardian
; ; Corporation
(e.g., vessel walB5) by threading the transducers onto a matching threaded e
coupler84 affixed to the wall.—IMH 23 October 2001(Class 73606); filed 30 August 1999
This apparatus is capable of measuring sub-Angstrom scale vibrations
and discerning sub-nanometer surface features of a specimen. The specimen
is vibrated using a rf signal frequency modulated by a second lower fre-
6,307,302 guency signal. A sensing tip, coupled to a control circuit, is used to image
vibration modes of the specimen, for example, a piezoelectric specimen.—
43.40.Rj ULTRASONIC TRANSDUCER HAVING IMH
IMPEDANCE MATCHING LAYER
Minoru Toda, assignor to Measurement Specialties, Incorporated 6,292,571

23 October 2001(Class 310334); filed 23 July 1999 43.66.Ts HEARING AID DIGITAL FILTER
A transducer coupled to an impedance matching layer is described. Walter P. Si ) S fC i
. A } I alter P. Sjursen, assignor to Sarnoff Corporation
The impedance of the matching layer is less than that of the radiation 18 September 2004Class 381312); filed 2 June 1999

20 — T T T T T T T T ]
| l I i | 1 I I l I
LT A e A S A reduced hardware FIR digital filter scheme is described in which
R R AU AU S D N SR SUU N multiplies are accomplished with a single general purpose multiplier that
~ 18 -: : T —: ].— —: r T 1, :_ uses only shifting. The invention is possible because the digital filter coef-
= 1 ! 1 ! 1 1 ici iti
2 14 Fq-——F-——t--"---t-—-—-F J,mi.m'ﬁeﬁﬂe_ f|C|ent§ are related generally td‘.2Advan.tages over traditional hardware'
—_ ! ! | l | I i multipliers include less power consumption, reduced cost, and smaller size
o e e A I O it it without sacrificing performance.—DAP
Y ] 1 | | | 1 |
ST I s i mile bt bl Shbls B T~
8 | | | 1 I 1 !
TR o S st SR RN SRR SR SRR 6,202,572
o
5 i i ! | d)_ | ‘ I
Lol _n ) WITHOUT 4
S 6 i | ™ WATCHING (AYER 17 43.66.Ts HEARING AIDS WITH STANDARDIZED
P O S I S S SPHEROIDAL HOUSINGS
i l
2 _.'[__..'r_ Robert Yoestet al, assignors to Beltone Electronics Corporation
: : 18 September 200X Class 381322); filed 19 September 1996
0

02 04 086 08 1 12 14 16 18 2
FREQUENCY (Hz) x 108
A standard, one-size-fits-all, symmetrical, egg-shaped or pear-shaped

) housing has a soft, deformable spongelike outer layer to ease insertion and
medium but greater than that of the transducer at the resonance frequengprove comfort for the hearing aid wearer. The soft outer layer may op-

The result is a more efficient radiation characteristic.—IMH tionally be removable and may contain a wax guard.—DAP
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6,307,944 6,302,697
43.66.Ts SYSTEM FOR MITIGATING RF 43.71.Ky METHOD AND DEVICE FOR ENHANCING
INTERFERENCE IN A HEARING AID THE RECOGNITION OF SPEECH AMONG

SPEECH-IMPAIRED INDIVIDUALS

Reginald G. Garratt and Elmer V. Carlson, assignors to Knowles
Electronics LLC . . )
23 October 2001(Class 381312): filed 2 March 1998 Paula Anne Tallal, San Francisco, Californiaet al.

. ) . . . ) 16 October 2001(Class 434185); filed 8 December 1994
This comb filter is designed to suppress the harmonics of the fixed
on—off gating frequency of the rf signal emanating from a digital cellular Like many others in a long series of patents related to tests for hearing
telephone or another similarly interfering device. The filter is inserted be-deficiencies, this patent describes a method of stretching the durations of
tween the hearing aid amplifier and the receiver. To make the attenuateghose portions of the speech signal which involve rapid spectral transitions.
frequencies coincide with the frequencies of the interference signals, thehe current system also produces an increase in the signal amplitude during
method uses two pulse detectors separated by a delay. The delay is adapigdse intervals. In addition to the therapeutic value, the techniques are said

to the proper value to correspond with the time of arrival of the pulses. Thqo be of value in learning the sounds of a foreign language.—DLR
delayed pulsed signals are subtracted from the original pulsed signals to '

produce interference cancellation.—DAP

6,307,945

6,289,313
43.66.Ts RADIO-BASED HEARING AID SYSTEM

Andrew J Jami Hall. assi oS Sonic Limited 43.72.Ar METHOD, DEVICE AND SYSTEM FOR

ndrew James Jamieson Hall, assignor to Sense-Sonic Limite

23 October 2001(Class 381315); filed in the United Kingdom 21 ESTIMATING THE CONDITION OF A USER
December 1990

A switchable, directional/omnidirectional microphone, a direct electri-
cal input, and an FM transmitter are housed in a small, portable hand-held
unit. An FM receiver connected to an amplifier which drives an inductive This voice analyzer system would construct parameters from linear
loop is packaged in a combination pendant/necklace. The inductive signal igrediction encoded data packets to determine speaker conditions, such as
coupled to an earpiece which provides an audio output to the ear—DAP excessive breathing, agitation, fatigue, etc. The measurements could be used

Pekka Heinonenet al., assignors to Nokia Mobile Phones Limited
11 September 200X Class 704270); filed in Finland 30 June 1998

Digital
6,292,769 mobile phone
41 42 43
43.70.Kv SYSTEM FOR AUTOMATED ~ ~
TRANSLATION OF SPEECH mp|Speech] gy [Vocal tract
encoder parameters
Mary A. Flanagan etal, assignors to America Online, i i
Incorporated 47 45 1
18 September 200X Class 7043); filed 14 February 1995 / / /48
If you accept the premise that unconstrained speech recognition anc Jggz’lif;i'( Calculation of Status of
language translation are in fact possible, then the ideas covered by this transformation ﬂ pulmonary function # asthma
patent are simple. A typical, commercial speech recognizer converts incom- matrix parameters

ing voice to text. The text is automatically translated to multiple languages

as requested, and the result is transmitted and resynthesized. Two references
allegedly documenting available translation software are in fact hyped ufgo monitor for unhealthy conditions, such as asthma. Based on standard cell
consumer reports, one titled “Machine Assisted Translation"—hardly anphone speech coding systems, the method would not need a special trans-

automated translation technique.—DLR mitting device—DLR

6,305,942
43.71.Hw METHOD AND APPARATUS FOR
INCREASED LANGUAGE FLUENCY THROUGH 6,308,153
INTERACTIVE COMPREHENSION, RECOGNITION 43.72.Fx SYSTEM FOR VOICE VERIFICATION
AND GENERATION OF SOUNDS, WORDS USING MATCHED FRAMES

AND SENTENCES

William Y. Huang et al, assignors to ITT Defense, Incorporated

Robert S. Block et al, assignors to Metalearning Systems, 23 October 2001(Class 704246); filed 10 April 1996

Incorporated
23 October 2001(Class 434156); filed 12 November 1998 This speaker verification system collects the speech from a known

This language teaching software displays an object and speaks tr.hg(\hrase spoken by the applicant and performs a typical HMM recognition
word for that object in any of several languages. In addition, the word mayProcess to assign phonetic labels to the speech frames. Tests for energy
be spelled out on the screen. There is no provision for an obvious extensioi@nge and spectral equalization allow some of the test frames to be elimi-
which would allow the user to speak into the machine and have the voicéated. The applicant's labeled frames are then compared with reference
analyzed for pronunciation accuracy.—DLR frames having the same phonetic labels.—DLR
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6,289,311 6,292,777
43.72.Ja SOUND SYNTHESIZING METHOD AND 43.72.Kb PHASE QUANTIZATION METHOD AND
APPARATUS, AND SOUND BAND EXPANDING APPARATUS

METHOD AND APPARATUS

Akira Inoue and Masayuki Nishiguchi, assignors to Sony

. ) S . . Corporation

Sh O d M ki Nish h to S
o Hmor an asayuki TNIshiguchi, - assignors 1o sony 18 September 2001(Class 704230); filed in Japan 6 February
Corporation 1998

11 September 2001Class 704269); filed in Japan 23 October 1997
- - . . This is a fairly typical line-spectral-pairs vocoder using code-excited
Thls_llnear prediction speech coder with codebooks for both VOICEdlinear prediction for the speech analysis/synthesis. But, in addition to the
and qnvomed spee(?h uses wo sets of (?odebooks,. one.set for narrow—b_a%ual CELP codebook parameters, the system also transmits phase informa-
low-bit-rate synthesis and one set for wideband, high-bit-rate, high-qualitiop, 1o allow correct reconstruction of the harmonics’ phases during voiced

synthesis. The object of the invention can be stated fairly simply: Speed%egments. The encoded speech quality is said to be improved as a result.—
codes, encoded and transmitted with the low-bit-rate system, could be rey g

produced with the high-quality system. The objection can be stated even
more simply. If it's so easy to produce high-quality speech from low-bit-rate
codes, why bother with a low-bit-rate synthesizer?—DLR

6,295,520

43.72.Kb MULTI-PULSE SYNTHESIS
SIMPLIFICATION IN ANALYSIS-BY-SYNTHESIS
6,292,780 CODERS

43.72.Ja TALKING TRADING CARD PLAYER Wenshun Tian, assignor to Tritech Microelectronics Limited
SYIST.EM 25 September 200XClass 704223); filed 15 March 1999

This patent describes an enhancement to the G.723.1 CELP vocoder
Dieter D. Doederlein et al, assignors to Micra SoundCards standard in which a speedup in the computation of vocal tract response

Incorporated functions is obtained by sorting the excitation signal into zero and nonzero
18 September 200XClass 704270); filed 25 August 1995 :‘/”etltleures.D(E;Iy the nonzero values are processed by the tract convolution

This patent describes an enhanced type of collectable trading card,
such as baseball cards or hockey cards. Within the cardboard card would be
a synthesizer chip containing audio samples of speech or sounds appropriate

6,308,798

S’lz 43.80.Ev LIGHTWEIGHT STETHOSCOPE WITH
VARIABLE DIAPHRAGM AND BELL COMPONENTS

18 Richard Rashman and Dennis Shick, assignors to Prestige
20 Medical Corporation
30 October 2001(Class 181131); filed 22 April 1996

This is yet another stethoscope design, this one featuring a dual-head
chest piece with removable diaphragm structures and bell components for
adapting the stethoscope for use with infants or adults, or on sites having
30 less skin area, such as ribs. The stethoscope also incorporates a single tube
for connecting the chest piece to the earpiece. The unit is said to be smaller
and lighter in weight than a conventional model.—DRR

/)

22

26

BN S NN NSNS S AN SNSANAINNDNY

7//)!'4 LT 4 SN\

6,308,714
24 43.80.Gx ULTRASOUND ENHANCED
% 28 CHEMOTHERAPY
3?2 Thomas M. Peterson and Robert J. Siegel, assignors to Coraje,

Incorporated
30 October 2001(Class 128398); filed 10 November 1998

This apparatus is designed to enhance the action of anti-cancer agents.
The anti-cancer agent is introduced into or near a tumor and then ultrasonic
to the card’s content. The card would be placed into a reader/player uniknergy is directed at the tumor. The ultrasonic energy is claimed to be
which would supply power and a loudspeaker to hear the card’s output.—sufficient to increase the anti-cancer activity on the solid tumor without
DLR significant heating of the tumor or surrounding tissue.—DRR
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6,307,303 adjustable by choosing to drive one bank at the center of the lens, or by
choosing to also drive several banks arranged around the center of the
43.80.Vj ULTRASOUND TRANSMITTING lens.—IMH

CONFIGURATION

Mario Bechtold et al, assignors to Siemens Aktiengesellschaft
23 October 2001(Class 310335); filed in Germany 23 July 1998

An ultrasonic transducer arrangement and lens system is shown. Banks
of elongated transducer elements are arranged behind an acoustic lens. Each 6,305,225
bank is driven as a unit, and the depth of focus of the overall device is

04 5 3 43.80.Vj ULTRASONIC SIGNAL FOCUSING
W 7 METHOD FOR ULTRASONIC IMAGING SYSTEM
N 3 =
\ | Moo-Ho Bae and Mok-Kun Jeong, assignors to Medison
5 = h [ g Company, Limited
I 2 (= = 23 October 2001(Class 73602); filed in the Republic of Korea 9
i = o k 3 December 1998
C d \ A method is described for use in multi-element ultrasonic imaging
e systems, wherein the element-to-focus distance for each element is esti-
7 = 7 mated, then refined, based on the image brightness or contrast. The method
3 5 yields a best focusing time delay curve for the elements, especially in media
lﬂ‘\’ (e.g., biological where adjacent segmentsf tissu¢ may have different
7 7 sound speeds.—IMH
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A simple formula for the Lamb modes in a plate (L)

Faiz Ahmad®
Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan

(Received 15 April 2001; revised 17 January 2002; accepted 17 January 2002

The dispersion relation for the Rayleigh—Lamb modes in an elastic plate can be replaced by a
simpler equation, which admits exact solution. The approximation is valid for almost all modes
when the phase velocity is betweepandc, . © 2002 Acoustical Society of America.

[DOI: 10.1121/1.1460921

PACS numbers: 43.20.Bi, 43.20.MANN]

I. INTRODUCTION tanua)

Consider an infinite isotropic plate of thickneds éhar- tanH(ug) & ©®
acterized by the phase speegsandc, , respectively, of the
transverse and longitudinal bulk waves. keandk denote  Where
the frequency and the wave number of a wave which propa- c
gates in a direction parallel to the plate surfaces which are  a(c)= /_2 1, (6)
assumed to be free of traction. The dispersion relation for the Cr

symmetricmodes is given by

2
tan(gh)  —4pgk @ B(c)=~\/1— % (7)

tar(ph) ~ (q?—k%)?" )

where and
4a(c)pB(c)
w —
p= c_f_kz’ ¥ NO= A a2 ®
2 The function tank is an increasing function bounded above
q= ?—kz. (3) by unity. For anyuB8>0, 1—s<tanh (8)<1, and ¢ be-
2

comes progressively small ag8 becomes large. For ex-
The corresponding dispersion relation for the antisymmetri@ample, if

modes is obtained from E@l) by interchangingy andq on

the left hand side of the equation. In this letter we shall up=>3, ©)
discuss only symmetric modes.

Equation (1) is known as the Rayleigh—Lamb
equatior?® Dispersion curves, expressing or the phase tanhupB)=1 (10)
speed in terms of the wave number, are obtained numerically.

Sketching of these curves is facilitated, to a great extent, bgan be used with an accuracy of 5 parts in 1000. Since con-
Mindlin’s method of bound§.Details of these curves may be dition (9) is satisfied for almost all modes, i=2, the ap-
found in virtually any graduate textbook on elastic waves,proximation(10) is valid in most parts of the regioor<c

see, for example, Ref. 1 or 5. <c_. Equation(5) is now replaced by

In this letter we shall show that, fay<c<c,, Eq.(1)
can be replaced by a simpler equation which admits an exact tan(au)=y, (1)
solution. This makes the ;ketching of modes a simple _affairwith the solution
If the spectrum is plotted in the form of the phase velocity as

thene<<0.005, and the approximation

a function of the dimensionless wave number, a horizontal tan X(y)+nar
line intersects the modes at equidistant points. Un=—""— n=123,... (12)
Il. THE APPROXIMATE EQUATION Equation(12) is an explicit solution of the Rayleigh—Lamb
Define equation and can be used to plot the dispersion cusyes
Ss3,...., with fairly good accuracy in the region where Eq.
® (10) is valid. Note that the points given by E@.2) are such
=1 U= hk, (4 that the distance between a pair of adjacent points is constant

along a horizontal line. Thus if any one of the dispersion
curves is sketched, all other modes can be obtained by dis-
placing each point horizontally by/« units. Note that the
3E|ectronic mail: faizmath@hotmail.com value of 7/« differs along different lines.

and assumer<c<c,. We can write Eq(1) in the form
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TABLE |. Dimensionless wave number for various modes for an aluminum plate, Poisson’s rafi(855,

corresponding to the phase velocity 1.8ct .

Modes S, S5 S3 Sy S Se S7 Sg
Approximate ~ 2.844 4943  7.042 9141  11.240  13.338  15.438  17.537
Eq. (12)
Exact Eq.(5)  2.818  4.940  7.041 9141 11240  13.338 15438  17.537
Ill. VALIDITY OF THE APPROXIMATION three-quarters of the range, the approximati@?) gives
) very good results. In Table I, we compare the exact results
If tanh(UB)=1—e, then Eq.(5) gives with those given by Eq.(12) for aluminum whenc
tan(ua)=y(1—¢), = 1.8cT: We see that fos,; the difffelrence between the two
results is less than 1% and feg it is less than 4 parts in
or 5000. For the rest of the modes the two results are essentially
tan Y(y(1—¢))+nw identical.
n= : (13 In Fig. 1 are plotted the symmetric mod®s s,, s; and

(¢4

Thus the errodu in the value ofu, by using Eq(12) instead
of Eq. (13), is

. ve B 4B¢
“a(l+y) ([a(©P-1)%(1+9)

Sincee becomes very small for the modes sz, ... forprac-
tically the entire ranger<c<c, and even fos,, for nearly

du (14

Ny
&

g
3
&£

-
o

.
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FIG. 1. Symmetric modes,;—s, in an aluminum plate. Full curves are exact

and dashed curves are based on @8).

J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002

s,. The approximate curves obtained by using E) are
shown dashed in the figure. It is found that the two types of
curves differ significantly only fos, between 1.8; andc .

The curves for the higher modes essentially overlap through-
out the entire range;<c<c, the difference being so small
as to be invisible on the scale used for the figure.
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Chaotic behavior of piezoelectric plate vibration (L)

Yu Zhang,® Wen-hua Jiang, and Gong-huan Du
Institute of Acoustics, State Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093

(Received 11 November 1997; revised 6 December 2000; accepted 14 February 2002

A dynamical model for the piezoelectric plate vibrations is presented in this letter. The calculations
of phase portrait and Lyapunov exponents based on the coupled-mode equations given by the
theoretical model show that the vibrations of a piezoelectric plate resonator under the resonance may
exhibit the chaotic behavior. The experiment is carried out for a LiNtrkness-longitudinal
vibration plate resonator by using a setup based on heterodyne laser probe. The fractional harmonic
vibration as well as chaotic behaviors are observed.2@2 Acoustical Society of America.
[DOI: 10.1121/1.1471900

PACS numbers: 43.25.Gf, 43.25.R¥AB ]

I. INTRODUCTION X1 and X, are considered infinite. Thus this is a one-

. . . . . dimensional problem. Then the equations governing the plate
The linear vibration of a piezoelectric plate has beenvibration arep q 9 9 P

thoroughly studied. Recently the nonlinear behaviors were
interesting to many authofs? Fractional harmonic vibra- Pus dPs3 D4
tions had been observed in a resonance ultrasonic wave PO 7 T Taxa’ axa
systemi as well as in an ultrasonic Langevin transduter.

When the nonlinear phenomena are involved, the perturbawvhere u; is the particle displacemen®,; is the Piola—
tion method of successive approximation is commonly dsed.Kirchoff stress, andD; is the electric displacement. The
However, it is known that the successive approximationboundary conditions are expressed as

theory of straightforward expansion often leads to appear-
ance of secular terms and is not adequate to describe the
nonlinear behaviors shown by a piezoelectric plate resonator
under resonant driving. In this letter a new dynamical model
for piezoelectric plate vibrations is presented. First, the thewhereh s the thickness of the plat¥, and() are amplitude
oretical derivation to obtain the coupled-mode dynamical@nd angular frequency of driving voltage, respectively, and
equations is given. In the derivation, the method of boundaryFs is electric field. Keeping up to cubic afuz/dx; and
integration and modal truncation is used. As a result, thdinear terms oD, the constitute equatidris yielded that
partial differential equation governing the piezoelectric plate
vibration is reduced to a set of ordinary differential equa-p,,— cP

0, (1)

X3 Xz

h/2

P33|x3=ih/2:01 J hleg dxz= Vg cost, (2

dus (72U3 €33 1 — dus 2
D3+§(C333+3C?3) X
3

tions. Then the nonlinear vibrations of a piezoelectric plate Boxg " xgdt g3
resonator are analyzed based on the equations. The phase -
. . e33_d3.33 dusg 1 — — )

portrait and Lyapunov exponents are calculated. Finally, the ——= "D+ ~(Caazat 6Cazat 3C5)

experiment for a LINbQ@ plate resonator is carried out. The g3z X3 6

fractional harmonic vibration and chaotic behavior are ex- FIRE

perimentally observed. For the piezoelectric plate vibration X(W) , (39

under electric driving, it is first calculated in theory and ob- 8

served in experiment. D= s45E 5+ €a3(dUsldXg) | (3b)
where the stiffened second-order elastic constant, the

Il. DYNAMICAL MODEL AND ANALYSIS OF effective third-order elastic constant, the effective first

PIEZOELECTRIC PLATE VIBRATION odd electroelastic constant, and the effective fourth-order

The calculation is conducted for a purely thickness-elastic constant, respectively, a@f,=Caa+e3fes3, Cas
longitudinal vibration piezoelectric plate. The geometry of =Casst 334 €33/£39)°— 3bso(€33/£33)° — 3d3.33(€33/ e 39),
calculation is shown in Fig. 1. The surfaces of the plate aréls.3s= d3.33~ 8339 €33/639)° + 2b33(€33/£39), Cazzz=Cazas
electroded through which a sinusoidal driving voltage of the+ 3 (e334€32) (€33/£39)° — (£33331 120538 333/€39) (€33/£:39)*
plate resonator is applied. The coordinate awjss parallel  +(4dsgs 3+ 12054 €35~ 6d3. 358 333/ €39 (€33/ £39) °+ 6(@3.33
to the normal of the plate and corresponds to a pure mode 20333033/ €32) (€33/£39)? — (4d33.33— 303, 33/ €39) (€33/
direction of the piezoelectric crystal. The dimensions alongess). In the expressionsCs;, €33, andes; are the second-

order elastic, piezoelectric and dielectric constants, respec-
dCurrent address: Department of Surgery, Division of Otolaryngology Heaanve'y' Cs33 and Cyggz are the third- and fourth-order elastic

and Neck Surgery, University of Wisconsin Medical School, Madison, WI COﬂSt(fint58333 and e3333 are the third- and_fo_urth'order di-
53792-7375. Electronic mail: zhang@surgery.wisc.edu electric constants.bs; is the electrostrictive constant.
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2 X2 Uz=A(t) sinkgx3+ A,(t) cos XKoXg+ -+, (8)

A
/ where A,(t) corresponds to an antisymmetric mode and
h/2 4 A,(t) to a symmetric mode and they are functions with re-
o = X spect to time. Since the electromechanical nonlinearities in
-h/2 constitutive equation are ignored for simplicity, £g) easily
VocosQt leads to
3h 833VO COSQt"’ e33U3| +h/2 (9)

FIG. 1. The geometry of the calculation. Substituting(7)—(9) into (6) and implementing integra-

tion under the condition that the modes are truncated at the
d3.33, 03333, 3333, @andag. g3 are the first odd, second odd, first two modes, a set of nondimensional coupled-mode
third odd, and first even electroelastic constants, respectivelgquations which describe the dynamical behaviors of the pi-
a is viscosity constant. Substituting these expressions, thezoelectric plate vibration is given by
equation of motion is reduced to . 2A2 64 Rg

= ~ 4 -
Al+ ﬂ)iAl— 2Vo COSQt“FFl p

dus Uz dug —15Yee

LUs=pogz G T 4G A ~4
— 1, %% ~
JU3\2  esg—daas  dUs + Yee Vo cosOi + Yeee| g +A1A§> —afAq,
= (0333+3C33)( ) - —Dsa_
X3|2 €33 X3 (109
1 — — dug)\ 3 8AA 4A, ~
+ 5 (Cagast 6Csa5+ 3C3) &—XJ . 4 Ayt wZA,=l,—24 + Yee 2V, cosit
It is known that the governing equation and boundary con- + J’ccc@ﬁfﬂzg)—@u&z, (10b)

dition for a freely vibrating linear plate are expresset as
where the dot over a letter denotes_time derlvatwe

2 2
L J V3 D J V3:0 (53) _kOAlv A2—k0A2, t—wot Q Q/wo, VO ‘)’eCkOVO! (Ul
V3= Po ;27 337 2 , 2, o
IX3 =(1-8k{/m7), anda)2 4 are normalized vibration ampli-
tude, time, frequency and drivirlg voltage, respectively, and

&V3/&X3|X3,th/2 o =0 Yec™ 933/C23: (3033+ C333/C33) Vee (€33
If Eq. (5) is taken as the adjoint equation, combining ).  —d3.33)/€33, ')’ccc (C3333+ 6C333+ 3C33)/C33, Iy
with Eq. (5) and integrating along the thickness of the plate= — 2y, .+ kZyee, T'2=— 2y.ctkiVee, @=(a/C)wy,
yields wherek? is electromechanical coupling coefficient.
hi2 Now the nonlinear behaviors of the piezoelectric plate
f (vgLuz—ugl’vs) dxg vibrations are analyzed based on Efj0). As an example,
—h the analysis is conducted for a Z-cut LiNp@late resonator.
R #us Py In the analysis, the following material parameters for
= J—h/z po( vz ugﬁz—) LiINbO; are used: k’=0.026, y,.=—1.3X10°, 7Yee

=-6.692, I';=8. 667><104 I',=1.387X10°, a=1.669
x107% ,;=0.989, andw,=2. Here the value oy is
determined by the experiment described in Ref. 4. In the
calculation, it is obtained by the measurement under the

+hi2 g |1 — 2 resonance frequency. We find that the influence of the value
Zf V35| 7 (Casst 3C3Dg)(—> of y..c on dynamics is not significant. Since the value of
~hi2 X3| 2 X3 L . .
vYece Cannot be found in literature, the value is plausibly
S T T taken as—6.6x 10°. _ _
T e Pk, When the driving frequency)2=1.001 is near to pri-
33 3

mary resonance frequency 1, the antisymmetric primary
resonance moda; will be strongly excited. If the driving is
dxs. (6)  strong enough, thé, mode will be parametrically excited.
When the normalized driving voltagé,=1.6x 10 ° (or the
Here the boundary condition equatio@ and(5b) and con-  yoltage is around 75 V peak-peakhe vibration exhibits
stitutive equatiort3) are used. The solution of E(p) can be  chaotic state. The phase portraits are shown in Figs.ghd
expressed as (b). The characteristic of chaos is evidently observed. The
v3=SiNwot SNk Xa+ Sin 2wgt cos KoXg+ - -+, (7) Lyapunov _spectra are calcu_lated a5=1.735<10 3, _)\2
0 =6.97x104 N=-5.97x10 4, andA;=—1.843<10 3,
wherek, andw, are wave number and angular frequency of The existence of the positive Lyapunov exponents indicates
the fundamental eigenmode akgh= 7. The particle dis- the chaotic state of the piezoelectric plate vibration. One
placements is assumed to take the form of notes that the values of Lyapunov exponents are small. It is

3
+= (C3333+6C333+3C33)( 3)
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FIG. 3. The dependence of the normalized maximal Lyapunov exponent on
the driving voltage.
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too high voltage is unpractical to experiméittis possible to
make piezoelectric plate brokenThus, we obtain the
“weak” chaotic solution. It also can be seen in the following
experiment.
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lll. EXPERIMENT

The experiment is carried out for the Z-cut LiNp@late
resonator. The setup is shown in Figa® To observe the
fractional harmonic vibration and chaotic behavior of the
. . . . . piezoelectric plate resonator, a vibration amplitude detector

5 e 08 00 0s 10 8 with wide frequency bandwidth is necessary. Here the advan-
® A, tage of a heterodyne laser probe is taken. Since the hetero-
dyne laser probe is a nonresonance amplitude detector, its
frequency bandwidth could be very wide. In fact the band-
FIG. 2. (a) The calculated phase portraits. Horizontal: vibration displace-v_vIdth IS_“mlted only by the cutof_f fr_equency of the low-pass
ment amplitudeA,(2.5x10°19. Vertical: vibration velocity amplitude  filter built in the probe. The principle of heterodyne laser
V1(2.5x10719. (b) The calculated phase portraits. Horizontal: vibration probe can be referred to in Ref. 8. With the aid of the laser
displacement amplitudé,(2.5x 10719, Vertical: vibration velocity ampli- probe, we can unambiguously detect the fractional harmonic
tudeV(2.5x10°19). vibration and observe chaotic behavior of the piezoelectric
plate resonator through monitoring the occurrence of the lat-
eral sideband or noiselike spectrum between the frequency
Cog of the Bragg cell used in the laser probe asgt ; (w;

much related to the weak chaotic behavior of the piezoele

tric plate vibration under this driving voltage. However, in s ihe fundamental frequency of the resonator

the post transient regime, the valuesiaf and x, always The plate resonator used in the experiment is a Z-cut
keep positive instead of fluctuating between positive a”q_iNb03 disc with the thickness of 0.8 mm and diameter of
negative values. Therefore we cannot regard them as zerg§g m. The primary resonance frequency is 4.552 MHz.
The system behav_e_s as the weak hyperchaotic system S_in(f\‘?’nen the driving frequencg? is tuned to 4.557 MHz, i.e., a
they have two positive Lyapunov exponents. In order {0 inyi higher than its primary resonance frequency, and the driv-
vestigate the evolution of the dynamical behavior of the Piing voltage varies from 30 to 60 V peak-peak, the vibration
ezoelectric plate vibration with the increase of driving volt- frequency spectrum of the resonator is shown in Figis)4
age, we calculate the dependence of the maximal Lyapunoy) i, the figures, the central spectrum is corresponding to
exponentk; on the driving voltage(see Fig. 3. Here, the  yhe carrier frequency of phase-modulated signal output from
values of thex; and the voltagev, are normalized a3,  the |aser probedg= 70 MHz for the laser probe used in the
=\1/1.735<10"° and V=V,/1.6X10°°, respectively. It experimenyt, and the spectra located on both sides of the
can be seen that whewi,<<0.1, \; approaches zero. The central spectrum are the lateral sidebands. The amplitude ra-
nonlinear system behaves as the periodic motion. With th@o of the lateral sideband to the carrier frequer(center
increase of voltag®, to 0.8 (or the voltage is around 60 V spectrum reflects the vibration strengthFor example, the
peak-peak the behaviors of the system become irregulardateral sidebands corresponding dg+ () is about 20 dB
since the maximal positive Lyapunov exponent exists. Thdower than the central spectrum in Fig(b#, which means
vibration of the resonator shows chaos. However, we failedhat the vibration amplitude of the resonator is around 10 nm.
to increase further the driving voltage because we find thaln Fig. 4(b) only primary resonancé.e., wg* w; and wg
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+2w;) can be seen. Fractional harmonic vibrations of theHere the strong nonlinearity of the plate resonator is cer-
resonator occur when driving strength increases, as shown fainly related to its resonance. The justification will be given
Fig. 4(c). When the driving strength increases further, thein future work.

vibrations of the resonator approach chaos, as indicated by
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Knowledge about typical source output influences perceived
auditory distance® (L)
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Vocal effort is known to influence the judged distance of speech sound sources. The present research
examined whether this influence is due to long-term experience gained prior to the experiment
versus short-term experience gained from exposure to speech stimuli earlier in the same experiment.
Speech recordings were presented to 192 blindfolded listeners at three levels of vocal output. Even
upon the first presentation, shouting voices were reported as appearing farthest, whispered voices
closest. This suggests that auditory distance perception can be affected by past experience in a way
that does not require explicit comparisons between individual stimuli2002 Acoustical Society

of America. [DOI: 10.1121/1.1471899

PACS numbers: 43.66.Qp, 43.66.Lj, 43.71.RiRB]

I. INTRODUCTION ments per condition per listener when analyzing the data.
This being the case, one cannot determine whether the
Egocentric distance is the distance between an observeource familiarity effects are due to long-term experience
and a point in space; perceived egocentric distance in th@ith the typical production level of speech or are instead due
auditory domain is the apparent distance between a listened repeated exposures to particular speech sounds within the
and a sound source. Stimulus information that influences thisnmediate experimental setting. If the latter is true, the per-
perception includes the intensity of the sound reaching a liseeived source distance of tliiest speech sample in an ex-
tener’s ears and the ratio of direct to reflected sound in geriment could be determined primarily by reverberation, ab-
given environmentBronkhorst and Houtgast, 1999; Mer- solute intensity, or some other kind of distance information
shon and King, 1975; Zahorik, 1998n addition to these that does not depend upon source familiafiershon and
stimulus variables, a listener might also determine the sourcging, 1975. Listeners might then base their distance esti-
distance of familiar sounds by comparing the sound pressurgates in subsequent presentations akangesin the per-
level at the ears with some internal estimate of the probableeived production level of the speech samples, relative to
output power of the sound source. For example, given a verheir initial estimate. In this way, previous reports of source
faint proximal stimulus that one identifies as a fire enginefamiliarity effects(Brungart and Scott, 2001; Gardner, 1969
siren, one might perceive the source to be far away, becausgay be due to comparisons between stimuli within the im-
sirens usually have high output power. Familiarity with amediate experimental context and have nothing to do with
sound source can encompass many different kinds of infotong-term experience with speech sounds. This letter de-
mation, but here we will define “source familiarity” more scribes a control experiment designed to rule out this possi-
specifically to mean the stored knowledge upon which oneility. To prevent individuals from comparing stimuli across
might base such estimates of output power. As yet, only arials, one must analyze the data obtained from the very first
few studies have systematically investigated the influence oftimulus presentation. Ifong-term knowledge about the
sound source familiarity on the perception of auditory dis-typical source output of speech contributes to the perceptual
tance (Brungart and Scott, 2001; Gardner, 196%his re- |ocalization of the sound source relative to the listener, pro-
search has focused on speech sounds, and the results cleatlyction level should affect source distance judgments even
show that when other stimulus factors are held approxiupon the first stimulus presentation.
mately constant, estimates of the source distance of speech
sounds are modulated by the production level used in gener-
ating the speech;specifically, listeners indicate the source Il. METHOD
distance of whispered speech to be nearer than that &. Testing environment
shouted_;peech. . . . Testing was conducted in a carpeted room,X7/3
A critical question remains unanswered by the foregoing

. . . 3.7 m, with an average reverberation ti , the time
research, however. The previous studies tested a relatlveiquire d for a sound to gecay by 60 ot ap?ggimately 03
small number of listeners and averaged across muIt|pIeJung— across the frequencies of interest. The stimuli weré ore-
sented by a Polk Audi@Model 5 loudspeaker system 2.5 m
dportions of _this W_Ol’k were presented at the 32nd annual_ meeting of thgrom the listener’s head, positioned approximately at ear
Psychonomic Society, 22-24 November 1991, San Francisco, CA. — aye| jn the median plane. The listener stood in front of a
BCurrent address: Department of Psychology, The George Washington Uni- . " )
versity, 2125 G Street, NW, Washington, DC 20052. Electronic mail: SOUnd-absorbing wedge which reduced reflections from the

philbeck@gwu.edu wall behind the listener. The straight line between the listener
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and loudspeaker was parallel to two walls, but slightly offsetTABLE I. Average and peak sound levels of the three different speech
from the room’s center-line. Thirty-six overhead |0udspeak_samples by the male and fem'e}le talkers, gs presented on playback tg Iistgn-
. . . . ers and measured at the position of the listener’s head. All values given in
ers_ (12.7 C_m dlamete_rcreaFed a diffuse W_ldeband masking sound levelgdBA). These stimuli were heard against a background of wide
noise to hide noise intrusions from outside the laboratorypand masking noise presented at 46 dBA.
The sound level of this noise at the listener’s ears was 48
dBA. Previous work involving this room in a similar con- Male voice Female voice
figuration demonstrated that sufficient reverberation remains Average Peak Average Peak
to generate some modulation in distance estimates for stimuti Shouted - - - -
cpnssfmng of Whlt_e nmse_burstMershor_let al, 1989. Me- Conversational 66 74 67 77
dian distance estimates increased by just over a meter for a whispered 66 74 67 76
range of source distances between 0.75 and 6 m; at 3 m
(nearly the same source distance as in the present)stigy
median response was approximately 1 m. Because the source
distance did not vary in the current experiment, reverberatiofy- Listeners
information signaled the same source distance for each pro- A total of 192 listener$96 men, 96 womerparticipated
duction level. Under these conditions, distance judgments this experiment for course credit. All reported normal

could be biased toward the source distance given by revehearing in both ears. None had previously seen the labora-
beration(perhaps near 1 m, based on the findings of Mershofory.
et al, 1989.

. . - D. Design
B. Generation and presentation of stimuli

h d stimuli ded in th . Listeners were randomly divided into six groups of 32
The sound stimuli were recorded in the testing ro0Mjigianers. The groups were distinguished by which talker and
described above. One male and one female talker were rgzich broduction level was heard on the first presentation.
corded speakmgofhe phrase “How far away from you does:o\ing the initial presentation of one of the six possible
my voice seem:" Each talker provided a sample of Fhestimuli, each listener was then presented with the other two
phrase using a vyh|sper, a shou_t3 and a norma}I conversauonlg'loductiOn levels, using the same voitmale or femalg
!evelz with the mlcrqphone posmonec_j approxmately 30 cm heard on the first presentation. Finally, the listener was pre-
in front of the talker’s mouth. For whispered recordings, theggtaq again with the sample heard initially. Thus, each lis-

ta}lkers Whlfspﬁl’ed as if rc]:omr.n:cjmcatmg Wlth. son|1eone 5‘_t theaner separately contributed an initial report for one of the
distance of the microphone; for conversational recordingss,mhies followed by additional reports for all three samples
they used a voice appropriate for communicating with some

. , i spoken in the samémale or femalg voice. This design al-
one just beyond arm's reach; for shouted recordings, theyy a4 for nonoverlapping analyses for first presentations and
attempted to shout as loudly as possible. Speech samplgs.  eqentations with an explicit preceding comparison
were digitized at 44.1 kHz with 16-bit resolution; during g4in1ys. Each of the possible orderings of stimuli occurred
playback, the samples were amplified by a Crown DL-2 pre'equally often.
amplifier and Crown PS-200 amplifier before being sent to
the loudspeaker.

A Rion NA-61 Impulse Precision Sound Level Meter
(with an NA-2X third-octave filter setwas used to obtain E Procedure
average and peak sound levels. Spectrographic analysis
showed that, not surprisingly, the male voice included lower  Listeners were blindfolded before entering the testing
frequency components than did the female voice. The differroom. They were never given prior exposure to speech from
ent production levels also showed clear variation. The whisa distance within the testing environment, nor did they hear
pered stimuli generally lacked the very low frequency energythe stimulus voices before the actual stimulus presentation.
associated with voicing and was dominated by energy in th&he four stimuli were presented in sequence, with the lis-
middle and upper frequency ranges. The shouts tended to ltener verbally judging the source distance after each stimu-
dominated by lower frequency components associated witlus. The instructions strongly emphasized that reports should
voicing of vowels. Conversational speech fell somewhereébe based on thapparentsource distance, as opposed to try-
between these extremes. ing to estimate the objectively accurate distance. This meth-

Ideally, one would want the sound level of all stimuli to odological detail is known to enhance the influence of per-
be equal in order to eliminate this as a controlling factor. Weceptual factors in determining the response over explicitly
adopted the conservative approach of setting both averagmgnitive factorgfor a review, see Carlson, 19/ The lis-
and peak levels of the shouting voice to be slightlgher  teners presumably knew the testing environment was in-
than the corresponding values for the whispered and convedoors, but the instructions were carefully worded to avoid
sational voicegsee Table)l This ensured that, whatever the suggesting any particular real or imagined size of the testing
contribution of sound level, it should have workedainst = room. Neither vision of the workspace nor error feedback
the expected perception of a distant shout. was provided until after the final response.
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€ p=0.001). Differences between reports from male and fe-
;J’ 10 male listeners may represent a genuinely perceptual differ-
e O 1st presentation ence or, more probably, some difference in how each group
% 8 [ 2nd presentation assigned numbers to a common perceptual experience. The
) 3rd presentation ~ difference associated with the sex of the talker may be re-
- 64 B 4th presentation lated to differences in the typical output power of male
% L shouts relative to female shouts. At present, the effects of
% 4 l individual differences on perceived auditory distance are
c e T AN poorly understoodalthough see Brungart and Scott, 2001,
= 2 I & l for one analysis

o) I~

g 0“% VN R Ill. CONCLUSIONS

Whispered Conversational Shouted

There are two main conclusions. First, listeners clearly
FIG. 1. Median _indicated distances, showing data _fr_om prese_ntations 1‘?‘eport Whispers, conversational speech, and shouts at system-
for three production levels. Error bars represeitsemi-interquartile range. h . . S .
The horizontal dashed line indicates the physical distance of the lugdtically different distances, even upon initial presentations
speaker. One estimate of 402 (first presentation, shouted stimulusas ~ and under conditions in which prior conceptions about the

omitted for this figure, but otherwise each bar represart$4. possible source locations are minimized. Analysis of the first
presentation data of nearly 200 listeners firmly establishes

F. Results that the effects of source familiarity are the result of long-

1. First presentation data term experience with speech sounds, rather than comparisons

h dian di ud for the f . between speech stimuli encountered within the immediate
. Ie median distance ju Ement; or the ow Cor,]secu:'v%xperimental context. Variations in production level from
stimulus presentations are shown in Fig. 1. There is a c eaéfouting to whispering were associated with changes in dis-

increase in indicated (_jlstan_ce across the t.hree styles nce judgments by as much as a factor @fedians: 3.05
speech even upon the first stimulus presentation. Median re- vs 0.76 . By demonstrating that source familiarity af-

sponse values for whispered, conversatlon.al, and shoutqg ;g egocentric distance estimates even when comparisons
speech were 0.76, 1.52, and 3.05 m, respectively, when thega, " o experimental stimuli have been prevented, we
stimuli o_ccurred first in the_ running order. The phy_swal have shown that source familiarity provides absolute dis-
source distance was 2.5 m in all cases; the general inacCis o information (Gogel, 1968; Mershon and Bowers,
racy of the_ responses ?S very _Iikely a consequence of th(.=[979. Second, the results shed light on the time course of
limited availability of stimulus information specifying the o accretion of information across multiple stimulus presen-

sour%e d|srt]anc(5ee I\l/lershoret 6%|.,. 1989. Of grheater mter— htations. Specifically, the median distance estimates changed
est than the general pattern of inaccuracy, however, is t stematically over a very short time scale, on the order of

pronounced and systematlc changes in d'Staﬂce Judgmen(g ly a few trials. Presumably, after the listeners responded to
across the three production Ieyels. Some skewing Was apPake injtial stimulus presentation, their distance estimates
ent in the data, SO an analys'ls of variarie&OVA) using ere influenced by a combination of two kinds of source
the ranks of the |nd|_cated_ distance Vall.Je_S was _performeqvmiliarity: (1) long-term experience with speech obtained
The_ rank transform_atlon dls_cards the original estimates angior to the experiment, ane®) short-term experience with
retains only the (_)rdlnal relations among them; the resul_t IS dheech stimuli presented earlier in the experiment. Although
test t_h.at, py mgklng feyver assumpnons.about the data, is le?fé)e did not attempt to determine the relative contribution of
sensitive(i.e., is less likely to detect.d|ffe.rences betvv_een these two sources in the trials following the initial stimulus
groups than before the transformatnoﬁ'ms cqnservatlve __presentation, it is clear that the effect of source familiarity
analysis showed that the production level variable was Sl9%as heightened when the two kinds of familiarity were avail-
nifigant (F2,180= 59.17,p§0.0001), with no other significant 5, i, combinatior(Fig. 1). The very rapid change in dis-
main effects or interactions. tance estimates upon repeated exposure to a single voice may
] explain why previous work has found virtually no effect for
2. Later presentations prior exposure to a talker’s void8rungart and Scott, 2001
When the listeners had the opportunity to make comif such changes become attenuated very rapidly and reach a
parisons across the different stimulus presentations, the reteady state, the effect will likely become more and more
ports of distance for the whispered and shouted voices bediluted upon additional stimulus presentations.
came more different. An ANOVA was performed on the In studies that use direct verbal distance estimates, it is
ranked values of these repeated-measures(degaentations difficult to dissociate genuine perceptual influences from
2-4). In addition to a main effect of production level more abstract cognitive influencés.g., reasoning Even if
(F2,360=790.69,p<<0.0001), there were significant main ef- the verbal estimates reflect a composite of perceptual and
fects of the sex of the listeneF{ 155—=11.17,p=0.001) and  cognitive factors, however, this composite signal behaves in
of the sex of the voice used as a stimulus, (s—=4.22, a very stable and predictable manner with changes in pro-
p=0.0415). There was also a significant interaction of pro-duction level. Taken together, our results and those of previ-
duction level and the presentation order, i.e., which produceus researcher@rungart and Scott, 2001; Gardner, 1969
tion level was presented on the initial triaF {355=4.71, indicate that source familiarity is indeed a potent determinant
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of perceived auditory distance, operating under a variety ofspeech. The linkage between vocal effort and production level is suffi-
conditions—across many listeners and talkers, inside andiently close, however, that production level provides a useful characteriza-

. . . . . tion of vocal effort(Brungart and Scott, 2001
outside the laboratory, with and without vision, and USInnghe output power of the speech samples was not directly measured, but

both live and prerecolr_de_d speech Stimu"_- These factors Sugsther researctiTraunmilier and Eriksson, 200thas shown that the sound-
gest that source familiarity can be exploited successfully topressure level of whispers is typically about 40 dB or less, relative to an

convey distance information in both real and virtual environ- arbitrary reference, with conversational-level speech registering at around
. . . . B h B .
ments. The relatively large perceived distances that this in2¢ 98 and shouts at 85 dB or more

formation is able to generate suggests that it can contribute
to the guidance of human navigation on the basis of auditorfronkhorst, A. W., and Houtgast, T1999. “Auditory distance perception

. . . . in rooms,” Nature(London 397, 517-520.
information. These results also show promise for appllcaBrungart’ D. S., and Scott, K. R2001. “The effects of production and
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Full-field acoustic methods for current velocity inversion require accurate and efficient
mathematical models of sound propagation in a range-dependent waveguide with flow. In this paper,
an exact coupled-mode representation of the acoustic field is derived. To account for the physics of
the problem, normal modes in a corresponding range-independent waveguide are chosen as the local
basis. In the absence of currents, mode shape functions form a complete orthogonal basis. This
property is heavily used in coupled-mode theories of sound propagation in motionless fluid. Unlike
in the motionless case, however, vertical dependencies of acoustic pressure in individual normal
modes are not orthogonal in the presence of currents. To overcome this difficulty, linearized
equations of hydrodynamics are rewritten in terms of a state vector. Its five components are
expressed in terms of acoustic pressure and particle displacement due to the wave. Orthogonality of
the state vectors corresponding to individual normal modes is established. Coupled differential
equations are derived for range-dependent mode amplitudes, leading to a remarkably simple result.
The mode-coupling equations have the same form as those known for the motionless case, but of
course the values of the mode-coupling coefficients differ as long as the range dependence of the
flow velocity contributes to mode coupling in addition to the range dependence of sound speed and
fluid density. The mode-coupling formulation is verified against known coupled-mode equations for
certain limiting cases and an exact analytic solution of a benchmark problen2002 Acoustical
Society of America.[DOI: 10.1121/1.1467672

PACS numbers: 43.20.Bi, 43.28.Py, 43.30[B]NN]

I. INTRODUCTION The goal of this paper is to extend the mode-coupling theory
110 moving media with time-independent parameters.

II_En\:'lronmentgl atchoustlcg, ‘?S we]ll as sgrpeléec.hnolog]ca To satisfy the physical requirement of mode coupling
appiications require the modeling of sound TIeds in moVmgvanishing in the limit of adiabatic range dependence, the

media. Particularly demandlng,_m terms c_Jf both propage}tlonnormal modes of range-independent waveguidemaving
model accuracy and computational efficiency, are full-field

“media should be used as a local basis for representing fields
methods of ocean current tomography such as those dis- . g

. in range-dependent waveguides. However, unlike in the mo-
cussed in Refs. 1 and 2. In response to the needs of unde[r-

water and atmospheric acoustics, most of the theoretica|g?r{r?;|s n?g;i’stz eng?gtrr:hie%ig??nnfr?eOfrigzl;]chco?;?sz:g
methods originally developed to model sound propagation i IS e g N the pre r Tt W
motionless media have been successfully extended to mo e orthogonality is heaV|'Iy usgd N various derivations Of
ing media(see Ref. 3 for a review A notable exception is the COL_'SIEdF;me%e Cehquat$ns dI:\ the dr_noél.oglefss 4acgu;tlc
the modal theory of sound propagation in a range-dependemgvegu'zgs{ 2e. ! hap. an h ppenl.lx f € 3 _h '
waveguide. While acoustic normal modes are known to1 ' 1_3’ . 1 IF IS the ponort ogonality of mode shape
propagate independently from one another when théuncno_ns in moving med_la that have preclud(_ed, so_far, an
waveguides are range independéRef. 3, Chap. %or their extension of mode-coupling theory to waveguides with cur-
parameters change gradualdiabatically with range(Ref. rents. To overcome this difficulty, we will characterize the
3, Chap. 7, no theory has been available to predict the nona@coustic field by a judiciously chosestate vectorthat is, a
diabatic evolution of the mode spectrum due to strong, conS€t Of field quantities, rather than by a single scalar
tinuous range dependence in a moving medium. Coumeocjependent variable. The idea is to choose the state vector in
mode equations that predict the mode spectrum evolution ai@ICh & way that state vectors corresponding to two different

well known and frequently used in the motionless ¢agé. local modes are orthogonal, while equations of linear acous-
tics written in terms of the state vector retain a certain ca-

Parts of th « have b us! ed at the 16th Internat nonical form that allows for partial separation of variables.

arts of this work have been previously reported at the nternation .

Congress on Acoustics/135th Meeting of the A&&attle, WA, June 1998 aﬁ-he concept of state VeCto,r 1S by_ . no means new.
and at the 4th International Conference on Theoretical and Computation§hEVChenk%WaS probably the first to utilize a state vector
Acoustics(Trieste, Italy, May 1999 (without using the termin relation to the interaction of

YAlso affiliated with: Acoustic Wave Propagation Laboratory, P. P. ShirshovacoustiC modes. Moreover. our approach can be viewed as an
Oceanography Institute of the Russian Academy of Sciences, Mos- N ’ . ' . . .
cow 117851, Russia. application to sounq in the moving flw_d of '_che technique

®Electronic mail: Oleg.Godin@noaa.gov developed by Maupitt for elastic waves in solids.
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The mode-coupling theory to be developed in this papewhereB,=1—u,q,/». Here and below, integrals oveare
is exact in the sense that we neither require the smallness tdken over an entire cross section const of the waveguide.
the Mach number of the currents nor impose any limitations  For normal modes of different orders, the following
on rate or magnitude of variations in environmental paramidentity holds[Ref. 3, Eq.(4.4.59]:
eters. Sound speet] flow velocity u, and medium density 2 2
. . - dz|(d, dp 1 1)\ 9f,df,
in the waveguide are assumed to be sufficiently smooth func{ ——|| 2 D¢ ¢ 4+ - |~ T
tions of position that are independent of time and consistenrd P [\Bm Bnq Bm Bn) 9z 9z
with the equations of hydrodynamics. For brevity, we neglect — _

. . . =0, m#n. (4)
the coupling of discrete modes to a continuous spectrum and o '
restrict ourselves to a two-dimensional problem of soundJsing the definition of8, Egs.(3) and(4) can be written as
propagation in a waveguide with horizontal idéptessure- @ single equation

release or rigiflboundaries or without boundaries. dz U of . of
With this Introduction, the remainder of the paper isJ T[(qmﬁﬁ qnﬂm)fnfm+_(,8n+ﬁm)a_zna_zm
organized as follows. In Sec. Il, we review some propertie PB:Bm @

of normal modes in a range-independent waveguide in a =2g_ 5§ (5)
. . . ) A AmOmn:

moving medium, and introduce a state vector. Linearized heres... is the K K bol. In th onl

equations of hydrodynamics are cast in Sec. Il in terms Oyv_elre mn IS the rondecEer Es)ym do. n the rr?ot;on _el_ss case,

the state vector as a first-order differential equation with re2=1: qnl__ _ql—n_* anf q.( )I re gces to the tamifiar or-

spect to the range coordinate. Coupled-mode equations aP%OgO”a ity relation of normal modes

derived in Sec. IV. Properties of the mode-coupling coeffi- dz

cients are discussed in Sec. V. In Sec. VI, numerical solution 7fnfm: Onmt On—m- (6)

of the coupled-mode equations is verified against an exact
solution of a benchmark problem. Alternative formulations e have the sum of two Kronecker symbols, rather than a

of mode-coupling theory are compared in Sec. VII. In SecSingle Kronecker symbol, on the right-hand side of E&).

VIl we summarize the major findings of this work. because in our nomenclature, normal modes propagating to
the right and to the left have mode orders of opposite signs.

The identity Eq(5) is a direct extension of E¢6) to moving
media. It cannot, however, be used to derive mode-coupling
Il. NORMAL MODES IN RANGE-INDEPENDENT equations in the same way that E6) is used in the motion-
MOVING MEDIA less casésee, e.g., Ref. 3, Sec. 7.1.There are two reasons
for this. First, the integrand in Ed5) contains derivatives
of 19z of the shape functions in addition to the shape func-

waveguide. We assume that flow velocity= (u;,0u3) and tions themselves and, second, the coefficient in front of the
environmental parameters and the acoustic field are indepeR°ductfnfm depends on the mode ordersm

dent of cross-range horizontal coordinateEnvironmental To cast Eq.(5) in a form more similar to Eq(6), we
parameters are functions ofand depttz only. In the case of need to introduce several additional concepts. Consider dis-
a range-independeriayered medium, when environmental placement of fluid particles in the acoustic wave. Oscillatory
parameters do not depend tythe vertical component of the displacement of fluid particlédw is related to their oscilla-
flow velocity is identically zerd? and acoustic pressure in ©TY Velocityv by

2D normal mode is given by Ref. 3, Chap. 4 v=dw/dt—(w-V)u, d/dt=d/dt+u-V, 7)

Consider continuous acoustic waves of frequeney
propagating along a horizontal coordinate(range in a

pr=fn(2)expligx—iwt) n==*x1,+2.., (1) whered/dt is a convective time derivative. In a normal
mode, oscillatory displacement is proportional to the acous-

where mode shape functidip(z) and propagation constant ,gc pressure gradient

g, are obtained as eigenfunctions and eigenvalues of th

boundary value problem defined by a 1D wave equation W=(pw2,8ﬁ)*1Vp. (8)
g 1 ap w?>  q? quy Further, we usev to define the state vectap by the equa-
92\ o082 9z) T\ o p? p=0, B=1---=, (2 tion

complemented by appropriate boundary conditions on hori- ®=(p,wy,dwy /dt,wg,dws/dD)T, ©)
zontal boundaries or conditions #t|—c«. Positive and with superscriptT denoting matrix transposition. For an
negative indices in Eq(l) correspond to normal modes acoustic field that is due to a single normal mode, from Egs.
propagating toward positive and negatixeCurrents break (1), (8), and(9) we haved = ®,(z) exp(q,x—iwt)

the symmetry between waves propagating to the left and

. . T
waves propagating to the right, and in moving media generg,_ =| f,,, 'q";frg , A m ' i . af_m, : ﬂ
ally f,(z2)#f_n(z) and q,#9_,. Let us normalize mode po By pwPm pwBr 9Z pwBn 9z
shape functions by the condition (10)
dz ETRE: Consider the acoustic field in a waveguide withrersed
f — f§+ 1 (_“) =1, (3) flow; that is, a waveguide with a flow velocity profilgz)
PBn wQy \ 92 =—u(z) and with the same boundaries as well as sound-
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speed and density profilegz) and p(z) as in the original (u-V)po=c?(u-V)p. (160
waveguidé* Modes of the original waveguide and the one

with reversed flow are connected by the obvious relationél\/:ja |gnoc;e the gﬁeci of gravify. '(;‘ layered(i.e., ra“ge('j
T (0)=—n(w) andT_(zw)=f(z o), N=+1,2,.... independentmedia, wherai;=0 andu=u(z), unperturbe

Therefore, for the state vectdr, of a mode in a waveguide Pressureno _const according to Eq16a and Eq.(8) fol-
with reversed flow, we have lows immediately from Eq(14).

In the general case, from E(L5) and the definition of

v | —ignfn, —anfn 1 of, —i afn)T the convective time derivative, we have
-n— ns 2021 ] 2 N2 P -
pw By pofn pwfy 92 pwpy Iz 1) owy 19x=—awz/dz—(pc?) " (p+w-Vpy), 17
The mode state vector E¢L1) in a medium with reversed owg 1 (IwW y dW3 N %) (19)
flow can be obtained by simultaneously changing the signs  dx  Uu; 3 T8z dt
of mode orderm and current velocityu in the mode state .
vector Eq.(10) in the original medium, From thez component of Eq(14), it follows that
In terms of mode state vectody,, Eq. (10) andW¥_ , Eq. d (dws 1| dwg dws| 1dp
(11), Eq. (5 expressing normal-mode orthogonality in mov- 55| gt | ~ u, lo= 3t ~Ysgz | ar |~ p Iz
ing media becomes
1 1% +w-Vpg d
T - __(W'V)ﬁ+—p 2 2poﬁ- (19
dz(W_,)'[B]®n=—2i0 “QmSmn: (12 p Jz p°c iz

Applying the operatod/dt to Eq.(17) and using thex com-

where[B] is a 5X5 matrix with just six nonzero elements ) .
[B] J ponent of Eq(14), we find after using some algebra that

0 -1 O 0 0

J dwy 2/.2y—1 Ui
10 pu 0O O x ar ~(A-u/e) T Qi 2 Q2 (20)
[B]=| O pu; O 0 0 1. (13
ap _
0 0 0 0 pu - —P(L—uTe) " H(Q—usQy), (21)
0 O 0 pu; O
The mode orthogonality relation E(L2) is largely similar to where
its counterpart Eq(6) in the quiescent medium but differs in _ auy a\[owsz p+w-Vp,
two respects. Modes are characterized in [#8) by vectors Q1=|lw— ox Yso)|l o7 T
in the moving medium rather than scalar shape functions in
Eq. (6); the mode state vectors are orthogonal with a matrix duz Iwq 1 aul 1 dpg d)\/.
weight[B] rather than scalar weightdin quiescent media. T 9z o U, 9z pc® ox  az)\'“™s
In both cases, the weights depend out not on mode
indices. S ) DT PO S
39z ' dt UPox pc? o2 ox oz
Ill. EQUATIONS OF MOTION o 2L P 7 1 ap
Our goal in this section is to cast equations of linear Wlﬁx pc? X 3(9x pC 9z
acoustics in range-dependent, moving fluid as a vector dif- 1 ap
: . . . . 0
ferential eq_uatlon_of the first orde_r Wlth resp_ect to coorc_hna_te — 2 —(p+W-Vpp)|, (22)
X. The starting point of our analysis is equations of motion in p°Cc’ dX
terms of acoustic pressure and oscillatory displacefient - dw, o dw, 1 P,
pd?w/dt2+Vp+(w-V)Vpo—(pc?) Qo=lo Uy, gy WV 57
X Vpo(p+Ww-Vpo) =0, (14 L P+W-Vpo 9o 29
V-w+ (p+w-Vpo)/pc2=0. (15) p’c® 9z’

Equations(14) and (15) have been obtained by linearizing In the transformations, the relations E46) between envi-
equations of hydrodynamics with respect to wave amplitudeéonmental parameters have been used.

and describe waves in the rather general case of an arbitrary Equations(17)—(23) give range derivatives of the five
inhomogeneous, multicomponent, moving fluid. Current ve<components of the state vectdrin terms of environmental
locity enters Eq(14) through a convective time derivative. parameters and values of tecomponents at a given cross
Sound speed, flow velocity, medium density, and presggire section of the waveguide. In a vector form, E¢?) to (23)

in the absence of the wave are related by equations become
Vpo=—p(u-V)u, (169 Il x=[A]®, (24)
V-(pu)=0, (16b)  where[A] is a 5x5 matrix that contains parameters of the
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medium(and their derivativesas well as operator& 9z and  Below, we will need the matrikC]=[B][A], which admits
9?19z, but does not contain operatarsix acting ond. The  a more compact representation tha]. From EQs.(17)—
matrix [A] does not depend o®; that is, Eq.(24) is linear.  (24) and the definition Eq(13) of [B], we find

1 1 apo 1 apo
— 0 — 0
pcC pC X pC x| oz
1 dpo 1 [dpo\® °Po g 1 dpo dpy  3°Po
2% % p_cz(&x) e 0P S xaz 0
[Cl= % %% 0 %%—pula—ﬂz 0 . 25)
1 dpp d 1 dpodpo °Po 1 9po dpo Py . a
pC% 9x dz pc? Ix Iz Ixoz 0 oC2 ox oz o2 'OPTPUsy;
. d
0 0 0 lwp—pusg- p

Matrix [C] proves to be much more concise thgh] be- numerical implementation because evaluation of mode cou-

cause, as is readily seen from E¢§3), (20), and(22), all pling coefficients would require knowledge of the range de-

terms involvingQ; Eq. (22) cancel in[C]. rivative of mode shape functiorisee the second integral on
the right-hand side of Eq28)]. Using Eqs(13) and(25) for
matrices[B] and [C], after tedious but simple transforma-

IV. COUPLED-MODE EQUATIONS tions we obtain from Eq¥28), (10), and(11)

Consider a vertical cross section=x, of a range-
dependent waveguide. Defihecal modesas the modes of %:( 1 da, ) (X)+E Inm(X)F (%), (29)
the range-independent waveguide with parameiérs,z), dx " 2q dx Fn h
c(Xg,2), andu=(u4(xq,2),0,0). Likep, c, andu, the vector
®.,(x,2) of such a local mode is a smooth function of range.
Let us represent the acoustic figkdas a sum of local modes
®,,(x,2) with as-yet-unknown mode amplitud€&s,(x)

where mode-coupling coefficients,,, are given by

- WL E@ 4@y~

PGS Pl () (26) Gam J A2(UsEnm* Ennt Enm) * 50 (4, — g

We substitute Eq(26) into Eq. (24), multiply the resulting ’ af” %
- dz f,f— = nmfnfm
equation ox | pc? "
1 01 dun(BntPBm) duy

> @,,(x,2)dF,,/dx <——— L |1, n#m, (30
mo " B dxp  wpBifm X 30

=2, Fn(0([Al®n(x,2) = 9P/ %) 27 1 az [, [,

. gnn:2 j 753 Onfnt 0z _(P 1)

by (W_,)"[B] from the left, and integrate overacross the ®0n J p*Bn

waveguide cross sectiot= const. Using the mode orthogo-
nality relation Eq.(12), we obtain + f dz(uzE(N+E2 +ER), (31)

dF,
> (fdz(\lf_nf[cybm

with

P,
—f dz(w_,)"[B] _)Fm(x)- (28)
X W {
Thus, we have reduced the problem to a set of coupled equa-nm 200, ﬁﬁ
tions for mode amplitudes.
The form of coupled-mode equations in Eg8) is not i |,
well suited for theoretical analysis. It is also inconvenient for Jz  pCBnPn

nOmfn 9 [ fm 1 9f, 9 1 of,
7z Pﬁma_

+___
pBml B 9z 9z

of. 02c2— w2B2
n qm :8m (32)
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)__ =

= 7 2,7,2 _ .
"M 20,p%0 BB Let us now discuss some properties of the mode-
( 1 9pg 9Po 9290) coupling coefficients and analyze the general coupled-mode

fm af, V. PROPERTIES OF MODE-COUPLING COEFFICIENTS
(qnfnﬁ_qm mg)

equationg29) for several limiting cases. The cases are cho-

2
pes ox dz. Xz sen to illustrate the relation of the coupled-mode formulation

1 ((9p0>2 3P for moving media, derived above, to previous results.
+i fofml —= | —| — —=
AnAmintm pc?\ ax Ix* A. The case of vanishing flow
Cof ofml 1 [po\? %P Consider sound propagation in a waveguide with
T o2\ oz | T a2 || 33y o According to Eq(16a, Vpy—0 in this case, and the
mode-coupling coefficients Eq&30) and (31) become
(3) 1 2 9Po _
EanW (AnBm= AmBn) fnfm—" 9nn=0,
f f ! w’ &
. J dty) dPg =—jdsz—( )
Fi ﬁnfna—;Jrﬁﬁ]fma—;)g : (34) I 200G ) " mox | pc?
The mode orthogonality relation E¢p) as well as the rela- _(qnqu f o+ % %)i 1 . n#m.
tion (Ref. 3, Sec. 4.5)1 Jdz JzZ [dX p
B 9p Let us compare this result to known coupling equations

in motionless fluid. There are two kinds of acoustic coupled-
mode equations for waveguides with continuously varying
aul] parameters. In the first approach, no distinction is made be-

c? 9z

afp\?
Qﬁfﬁ+(7;)

2
o 2

dg, 1 J' dz‘
dx ZQn P:Bﬁ

20750 (59¢_ 20n

c®  "ox

p X

tween modes propagating in opposite directions. This
approach® relies on mode shape functions being indepen-
(39 dent of propagation direction in motionless fluid, and leads

o second-order equations for mode amplitudes. In the sec-

between environmental gradients and variations of local q £ litud f mod o
mode propagation constant have been utilized in deriving th@1¢ aPproacti;” amp ltudes of modes propagating in oppo-

mode-coupling equation€9). site directions are considered individually, leading to first-

In the range-independent waveguidig, /dx=0 and order coupled equations for these amplitudes. The two
9am=0. From the coupled-mode equatio(gm) we have representations are equivalent, and one can easily be derived
nm . ’

then,F,(x) = exig,(x—xo) JF.(%); that is, each mode propa- from the other(see Ref. 3, Sec. 7.1 and Appendix Bbvi-

gates independently with its amplitude determined solely b)})us_ly, the_second representation Is bet_ter sun_ed for_a com-
initial conditions and its propagation constag, as ex- parison with coupled-mode equations in moving fluid. In-

pected. In Eqs(29) coefficientsg,, describe coupling be- deed, _in wgvegyides in moving media., mOdeS propagatiqg in
tween various modes and are generally nonzero in rang‘;r,)_pposne directions generally have distinct shape functions

dependent waveguides. The second integral in &) and, therefore, have .to be individually assigned range-
depicts explicit contributions to mode coupling due to rangedependent mode amplitudes.

variation of sound speed, current velocity, and medium den- Using the notgtional copventions of this paper, thg first-
sity. In moving media, additional contributions to mode cou-Order mode-coupling equations for a motionless medium, as

pling are due to the vertical componant of the flow veloc- given by Eqs.(7.1.33 a_nd(7.1.3_4 .Of Ref. 3, transform into
ity and variations in the unperturbed presspig see Egs. Eq. (29) with the coupling coefficients

(30) and (32)—(34). According to Eq.(16b), the vertical ve- U 1 dz  of,,
locity is nonlocally related to range derivatives of density ~ 9nm=5_~Dmn~5Dnm, Dom= f —an. (39)
and horizontal velocity G P

X

1 (2 3 It follows immediately from Eq(38) thatg,,=0, in agree-
Uz(x,z)= f dz'—[p(x,z )uy(x,2')], (36)  ment with Eq.(37). For a waveguide without boundaries or
p(X2) Ju~ oX with horizontal ideal boundarie®),,,, is given in terms of
environmental gradients by E7.1.17 of Ref. 3

where the lower limit of integratiorH can be taken at a
waveguide boundary or atoe for unbounded waveguides. 1 dz
Like ug, the gradient of the unperturbed pressure is another Dnm=ﬁj —
indirect manifestation of the medium range dependence. Ac- n=dn /P
cording to Eq.(16a, Vpy vanishes wherus and du, /dx 1 dp of, df
vanish. t———

The diagonal elementg,, Eq. (31) of the mode-
coupling matrix can be viewed as a correction, due to thdnspection reveals that wher# m, the mode-coupling coef-
range dependence, to the real and imaginary parts of thiicients defined by Eqs(38) and (39) are identical to the
mode propagation constaqy, . mode-coupling coefficients defined by E§7).

,0c72 wz—qécza_p o
@ ax pc? gx) mm

n#m. (39
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Hence, as expected, the mode-coupling equati@®s  according toq,——9_,, f,—f_,, andB,—B_,. Hence,
reduce to the known mode-coupling equations for motionlesfor the coupled-mode equatior9) to predict the same

media in the limit of vanishing flow. acoustic field in the two reference frames, the coupling co-
efficients should transform ag, ,— —9g-, - for all n and
B. Adiabatic approximation m.

Given the above transformation rules for the environ-
mental and local-mode parameters and tak— — d/ x, it
is easy to verify that the coefficien&),, j=1,2,3 defined
by Egs.(32)—(34) transform a€{)——EY), . Aninspec-
tion of Egs.(30) and (31) then shows that coupling coeffi-
cientsg, n indeed become-g_,, _,, upon the range coordi-
nate reversal, as required by the acoustic field invariance.

When parameters of the waveguide vary gradually with
range, according to Eq36), the vertical component of the
flow velocity us is inversely proportional to the spatial scale
L of the range dependence, whitp,/dx~1/L anddpqy/dz
~1/L? according to Eq.(163. With derivativesdu, /dx,
aclax, anddpl dx all proportional to 1, the coupling coef-
ficients g, as defined by Eq930)—(34), become negli-
gible in the limit of largeL. Then, equations for mode am- ]
plitudes of different orders decouple in E9), and we 2 Depth coordinate reversal
obtain If the direction of theOz coordinate axis is reversed,
an0%0) < mode orders, shape functions, and propagation constants re-

. exp(if qn(X')dX’>Fn(xo), (400  main unchanged as well as the environmental parameters,
An(x) Xo except forus; uz— —us, d/dz— —dldz. For the acoustic
wherex, is an arbitrarily chosen, initial cross section of the field obtained by solving the coupled-mode equatic to
waveguide. This result coincides with the well-knoadia- P& invariant with respect to the reference frame transforma-
batic approximationfor sound in a moving medium with tion, the coupling coefficientg,rm should not change.
gradual range dependence, previously derived from other Note thatE(y) [Eq. (32)] contains only odd powers of
considerationgRef. 3, Sec. 7,8 For two-dimensional prob- ¢z, while E{) [Eq. (33)] andE) [Eq. (34)] contain only
lems, it has the same form as in the motionless case; con@ven powers of the differential operatar; does not enter
pare Egs. (400 and (7.1.40 in Ref. 3. The factor EGs.(32—(34). An inspection then shows that both diagonal
[0n(Xo)/0n(X)]¥2 in front of the exponent on the right side EQ. (31) and off-diagonal Eq(30) mode-coupling coeffi-
of Eq. (40) originates from the term-{ 2q,,~'dq,/dx)F,in  cients are indeed invariant with respect to the depth coordi-
Eq. (29). Although the term is small for large, keeping itin ~ nate reversal, as required.
the equation for mode amplitude is essential. It can be shown
that the factof q,(xo)/qn(x)1¥2in Eq. (40) ensures acoustic 3. Time reversal
energy conservation within the adiabatic approximation.

When the coefficienty,, in Eq. (29) are small but not
negligible—that is, mode coupling is weak—solution of the
coupled-mode equations can be fouad, further, quanti-
tative conditions of validity of the adiabatic approximations sition. Hence, q,—q_n, fo—f o, Bu—p_ ., and F,

can be obtaingdby the method of successive appromma-_}F_n' For the coupled-mode equatiof®9) to predict the

fuons. For the motlonless_ case, such an analysis Is p_resen_tggme acoustic field, the coupling coefficients should trans-
in Ref. 3, Sec. 7.1.3. With the coupled-mode equations '?orm asg, m—9
n,m -n,,—m-

moving and motionless media being the same except for val- To establish compliance of the coupling coefficients

ues of the qoupling .co.efficients., the analysis can be extende!{gqs_ (30) and (31) with this requirement, it is sufficient to

to the moving media in a straightforward manner and nee how that the coupling coefficients are invariant with respect

not be reproduced here. to simultaneous change in signs wfand w, with all other
quantities in Eqs(30)—(34) unchanged. Note th&2) in Eq.

C. Symmetries of the coupling coefficients (33) andEL) in Eq. (34) are proportional to even powers of

The physical process of mode coupling cannot be afw, while ES) in Eq. (32) is proportional to Lb; E{), do not
fected by our choice of the reference frame in which thisexplicitly depend oru. It follows then from Eqs(30) and
process is considered. The invariance with respect to the31) that g, is invariant with respect to a simultaneous
choice of the reference frame imposes sarriori restric-  change in the sign ofi and w. Hence, the coupling coeffi-
tions on the coupling coefficients which can be used to verifycients calculated in Sec. IV have the required symmetry.

Egs.(30)—(34).

1. Range coordinate reversal

Fn(x)=

Changing the sign of time corresponds to the following
transformation of flow velocity and wave frequenay:—
— U, w— — w. All the modes change their direction of propa-
gation but not their phase and amplitude dependence on po-

D. Effective quiescent medium

Under certain conditions, sound propagation in a me-
If the direction of theOx coordinate axis is reversed, dium where the ratio of the current velocity to sound speed
environmental parametens,, ¢, p, and uz preserve their M=u/c is small can be modeled as propagation in an “ef-
values, whileu; becomes—u;. The mode having mode or- fective” motionless fluid. Such an approach is usually
dernin the original reference frame will be characterized byloosely referred to as aeffective sound-speed approxima-
the mode order-n because it now propagates in the oppo-tion. In fact, a full account of first-order terms M requires
site direction. Characteristics of the local modes transfornintroduction of an effective quiescent fluid where density as
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well as sound speed depends on the velocity of current in the  Mode shape functiong,, in the effective media Eq41)
original mediun?’ Therefore, we will use the termffective  satisfy the one-dimensional wave equations
motionless medium approximation (EMMA) the literature,
applicability conditions of various versions of EMMA have d
been addressed mostly for stratified media® Theoretical Jz
justification of EMMA and analyses of its conditions of va-

lidity in range-dependent environments have been put forand the same boundary conditions as those imposed on mode
ward only in the contexts of either the ray theGrpr the ~ Shape functiond, in a moving medium. According to Egs.
parabolic approximatiof:32 The validity of EMMA can be (41) and(44), coefficients of Eq(45) differ from coefficients
established without invoking the ray and parabolic approxiof Ed. (2) for f, by small termsO(M?+M x?). Taking into
mations by direct'y Comparing acoustic wave equations foﬁccount that mode Shape fUnCtionS are ﬂormalized by diStinCt
moving and quiescent media. It is shown in Ref. 33 thatconditions Eq.(3) and Eq.(6) in moving and motionless
when environmental parameters vary weakly or gradually ifnedia, we have

the directionN of sound propagation, and the direction itself ] )

is little changed over distances of the order of wavelength, Um(Z) = An() fm(ZX)[1+O(MZ+Mx*)],

1 p) [0?® df
p—a—Hp—‘p— P=0 49

the wave equation for sound in a moving medium with An=1+0(M). (46)
<1 reduces to the wave equation in motionless fluid with
effective sound speed and density, defined as follows: Now we are prepared to compare mode-coupling coeffi-
cients. In the effective medium, the coupling coefficients
Cer=CHU-N,  pes=pc?/cZy, (41) G, are given by Eq(37), whereé,,, ¢, per andCqg are to

whereN is a unit vector. The effective medium is indepen- be SUbS“tUteq oty fn. p gndc. Using .Eqs(41), (44), and
.|(46), for off-diagonal coefficients, we find

dent of wave frequency but generally depends on the prevail-
ing direction of sound propagation. 1+0(M)
Here, we use EMMA to check the coupled-mode equa- Gnm=m dz[fnf

n n m

J [ w?
m[?_x p_CZ - qnqunfm
tions (29) in the case of weak yet nonzero currents, against

known coupled-mode equations for the motionless case. ofof\[ 01 2 duy

Consider a range-dependent waveguide where grazing angles + 0z 0z (ﬁ_X ; R ox (47)
x pertinent to all propagating modes are smah<1), rela-

tive variations of sound speed and density are smadl ¢ Using Egs.(16a and(36) to evaluateV p, andus in the

=0(e), 6p/p=0(e), 0<e<1], and backscattering is neg- moving medium considered, we obtain from E¢30) and
ligible. Then, the validity conditions of EMMA are met as (32)—(34)

long asM <1, and one can takd= Vx in Eq. (41) for waves

propagating to the right. We will show that the coupled-mode _1+O(M+ety) P w_z)
equationg29) in moving fluid agree with the coupled-mode "M 20,(An—m) nMox \ pc?
equations in the effective quiescent medium within EMMA's

domain of validity. _(q Gf ft ! ﬁ)
First, let us compare mode propagation constants in the mmnem e 9z gz
moving and effective media. Using a perturbation theory n
(Ref. 3, Sec. 4.5)with respect to a motionless medium with (iz i E qm(’B”—z'Bzm) %) ,
sound speed and densityp, we obtain Brn X p wpBnBm X
(0 Ui oz (0)£(0) nrm “8
G0~ — [ Az (1527 (@1 | o o
moom pw " mem Inspection of the coefficients in front of the range derivatives
+0O(M?) (42) of sound speed, density, and horizontal current velocity in
’ the right-hand sides of Eq$47) and (48) shows that contri-
0 Uy (0)) 42 (0)¢(0):2 butions to mode coupling due to range variation of each of
Em—Om = _j qu(o)pC[(afm 102)+ (A Try') 7] the three environmental parameters are the same, up to the
m factor 1+ O(M + x+ €), in moving and effective media.
+0(M?). (43 Finally, diagonal coefficients in the mode-coupling

. . equations (29) in moving and effective media aréqg,
Here, &, is the propagation constant of tingh local mode —(2q,) " 'dq,/dx+g,, and i&,—(2¢,) *dé,/dx as Gy,

in the effective medium. Superscripts O indicate propagation_ 0. The termsq,, andi¢, in the diagonal coefficients differ
constants and mode shape functions in the unperturbe&/ the small quantitD(M2+M y2): see Eq(44). Compari-
. . . _ 2 i) -

waveguide. Taking into account thiet-Gm=dnO(Xx“), We 5o of the remaining terms is similar to the above compari-
have from Eqs(42) and (43) son of the off-diagonal coefficients. Using E(5) and

—0.=0-O(M2+ M2 = (d—a2YO(M + v2). 44 its counterpart for the effective medium, one finds that
i A= AnOME M= (A= dn DO XD 9 5 ¢ ) =3di, Ilx = [(20)~dfy/dx — Ganl[ 1+ O(M -+ €)1
Hence, EMMA correctly predicts the leading order of the This completes verification of the coupled-mode formulation
effect of currents on mode propagation constants. in moving media against EMMA.
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VI. ABENCHMARK PROBLEM: ROTATED WAVEGUIDE shape functions and propagation constants of the local modes

are given by Eqgs(52)—(54) with z—zy(x), acosa, and
U cosa substituted, respectively, f@;, a, andu. Unlike the

Secs. II-1V by comparing numerical solutions of the mode- : :
: . . shape functions, propagation constants of the local modes do
coupling equation$29) to an exact solution of a benchmark
not depend on range.

roblem. We are not aware of any published exact solutions, : . :
P yp Consider now mode-coupling equations for the wave-

either analytical or numerical, for range-dependent . ) 2)_ =(3)
waveguides in a moving fluid with a continuous dependencgUIde at hand. According to Eq&33) and (34), Eqp=Enp

of its parameters on coordinates. To generate a benchmaF=k0 due toVpo=0. Note that shape functiorfg of the local

solution, we will use arotated waveguidevhich is range ][nOd?S arefexen funfct|ons G‘|°—|Zo();]),|f0(; ‘3‘37'&'”'.&”" Ogg
independent in a rotated Cartesian coordinate syskenz/) funct!ons ? Z_ Zo(X) ?r: eve_?fn iIW |ef c E X |§0an 32)
but becomes range dependent in the original coordinaies unction of 2=2o(x). Then, it follows from Eqs(30)—(

z). The rotated coordinates are related to the original coordi'Ehat contributions to the coupling coefficients, due to

The goal of this section is to further verify results of

nates by range dependence of the sound speed and due to the vertical
component of the flow velocity are nonzero whign-m|

=1,3,5,...;9,m=0 when|n—m|=0,2,4,.... Moreover, be-

cause medium parameters and the shape functions depend on

X1=XC0Sa+zSsina, (49

wherea is the angle betweex andx,; coordinate axes.

Z,=—XSina+zcosa,

Let a waveguide be described in the rotated coordinate@9€ only through the combinatian-z,(x), and calcula-

by a parabolic profile of the refraction index squared
(50)

and a constant fluid flow of velocity alongx; coordinate

c3/c?(zy)=b—a%z,

axis. In Eq.(50), ¢y, a, andb are positive constants. Density

tion of g,,,, involves integration oveg, the coupling coeffi-
cients prove to be independent of range.

When a given linear combination of normal modes of
frequencyw propagates in the rotated waveguide, the exact
solution for acoustic pressure is given by

of fluid is assumed constant. In such a waveguide, the wave

equation(2) for normal modes becomes

0%plaz2+| w’cy 2B (b—az) — g?|p=0. (51)

p=>, 7afd(zcosa—xsina)
n

xexpigix cosa+igqizsina—iwt), (55)

By a linear transformation of the independent variable, Eq.

(51) reduces to the time-independent Sainger equatiotf

where 7,, are arbitrarily prescribed complex amplitudes of

for the wave functions of stationary states of a quantumthe normal modes whil€} andq?, are calculated from ex-
mechanical harmonic oscillator. From the known solutfon plicit Egs. (52)—(54). It is straightforward to write down
for the harmonic oscillator, one finds mode shape functiongounterparts of Eq(55) for oscillatory displacement and

and propagation constants
f2(22) =Ny exp = Y3/2)Hjnj-1(Yn),

yn=(wapBplco)?z;, n=+1+2,., (52
A wlcg |au 1) bu
=1 o] w Inl=3 Co
n\/b 2acy 1) a%u? 1\2
Finl o M7tz =53] ]

(53

whereH,(y) are Hermite polynomial¥**® Numerical fac-
tors N, are calculated from the normalization conditi(8)

_(wap,eﬁ/wco)l/“ u 1\]-%2
N”_\/2”—1(|n|—1)!{ancOm('n'_E) ’
(54)

using properties of Hermite polynomiafs*® The quantity
Bn=1-qdu/w may be complex. In Eq$52)—(54) it is as-
sumed— wr<argB,<.

When viewed in the original coordinate systér 2,

other components of the state vectbr Equation(55) de-
fines the benchmark solution. As usual, it is the real pap of
Eq. (55 that has a direct physical meaning.

To solve mode-coupling equations numerically, we first
truncate the infinite set of Eq$29) and then calculate the
coupling coefficienty),,,, EQ. (30) by numerical integration.
Finally, the truncated set of the mode-coupling equations was
solved with boundary conditions at=0 obtained from Eq.
(55). The calculations were implemented in the software
packageMATHEMATICA . Figures 1-3 illustrate results of a
comparison of the numerical and benchmark solutions.

Two versions of the truncated E(9) were considered:

(i) with ten equations for unknown mode amplitudes,
In|<6 and (ii) with 20 equations forF,, with |n|<11. To
emphasize the exact nature of the coupled-mode formulation,
parameters of the waveguide are chosen in such a way that
mode coupling is significant and flow velocity is not small
compared to the sound speed. Specifically, détcy=1,
u/cy=0.1,b=10, «=0.5 radian(Figs. 1 and 2 In this case,
ratio of the flow velocity to the sound speed on the wave-
guide axis ish*2u/cy~0.32. The rotated waveguide supports
ten propagating modes with Igg=0; modes withn|>5 are

the waveguide described above is range dependent. Thevanescent, i.e., lia),#0. When the benchmark solution cor-
waveguide axis, where sound speed is at a minimum, isesponds to a single propagating mode of the rotated wave-

given by the equatioz=zy(x) with z5(x)=xtana; sound

speed depends on bokhand z, and flow velocity has hori-
zontal u;=u cosa and verticalu3=—u sinae components.
Comparing Eq(2) for local modes to Eq51), one finds that

J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002

guide, exact as well as numerical solutions of the coupled-
mode equations predict that, for fixer—zy(x), |p| is
independent ok. Variation of the acoustic pressure ampli-
tude in a waveguide cross sectips const is shown in Figs.
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FIG. 1. Acoustic pressure amplitude in the rotated waveguide when a single —— - e e —
normal mode of unit amplitude propagates upstream: exact sol(gaial 0.4 ‘
lines) and numerical solutions of the set of coupled-mode equati@fs ’
truncated to 10 equatior{sashed lingsand 20 equationé&ots. The pres-
sure amplitude is shown as a function of the dimensionless dnepgﬁ(z
—270(x)) measured from the waveguide’s axis zy(x). The normal mode
order isn=—1 (a) andn=—5 (b). Parameters of the waveguide are defined
in the text.
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1 and 2 for different orders of normal modes of the rotated
waveguide. Mode coupling is strong, as can be judged from
large values of the mode-coupling coefficients or from spec- ‘
tral content of the mode of the rotated waveguide in terms of _ T B
the local modes. For instance, there are five local modes witt (c) depth
excitation coefficients of 20% of the largest excitation coef- _ _
ficient or higher for the moda=5 and 11 such local modes FIG. 2. The same as F|9_. 1 folr ni)rmal .modes_of the rotated waveguide
for the moden=—2 of the rotated waveguide. Despite the propagating downstreame=2 (2); n=3 (b); andn=4 ().
strong coupling, even the set of ten coupling equations pro-
vides a reasonably accurate model for calculating the amplito the case when the first and fifth modes of the rotated
tude cross sections, especially for lowest-order modes; segaveguide are excited with unit amplitudes. The figure
Figs. 1 and 2. Overall agreement for modes propagatinghows a coupled-mode solution and a solution within the
downstream is better than for modes propagating upstreamadiabatic approximation. Both solution were required to
As expected, the agreement between the benchmark and noratch the benchmark at=0. Parameters of the waveguide
merical solutions improves with increasing size of the set ofare the same as defined above with the exception of angle
the mode-coupling equations. With the bigger of the twowhich is now chosen to be 0.2 radian. Smaller valuexof
truncated sets of the coupling equations, there is a goodeakens mode coupling and thus benefits the adiabatic ap-
agreement between the numerical results and the benchmagpkoximation. Nevertheless, as illustrated by Fig. 3, the adia-
solution for all propagating modes. batic approximation fails to accurately reproduce the true
As a phase-sensitive measure of correspondence beange dependence of amplitudes of the local modes and rap-
tween the numerical and benchmark solutions, consider aidly deviates from the benchmark solution. When mode cou-
instantaneous value of the acoustic pressure=dl. Let us  pling is taken into account, agreement between the exact and
assume that two modes of the same frequency propagateimerical solutions proves to be rather good. Phase errors
downstream in the rotated waveguide. Figure 3 correspondsccumulate with range, though, eventually leading to a sig-
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FIG. 3. Acoustic pressure in the rotated waveguide when two normal modes propagate downstream: exact(saldtiime), calculations within the
adiabatic approximatiofdashed ling and numerical solutions of the set of coupled-mode equat@®)sruncated to 20 equatioridoty. The pressure at the
momentt=0 is shown as a function of the dimensionless daptj *(z—z,(x)) measured from the waveguide’s axis zy(x), for various values of the
dimensionless rangex/cy: wx/cy=1 (a); wx/cy=10 (b); wx/cy=20 (c); wx/cy="50 (d). Parameters of the waveguide are defined in the text.

nificant discrepancy between the numerical solution and theling coefficients are exactly the same as presented in Sec.
benchmark. According to Fig.(8), the accuracy obtained IV. Actual transformations in terms & happen to be sim-
when the infinite set of coupling equations is truncated to 2(ler than in terms of®, mostly because the>65 matrix
equations is still sufficient to calculate the field at the dimen{B ] in the mode orthogonality relation has just four non-
sionless rangex/cy=50, which approximately corresponds zero elements. We, however, prefer a description basahl on

to 13.57 periodswavelengths of interference of the two pecause this state vector contains the acoustic pressure

modes in the benchmark solution. among its components and thereby facilitates comparison of
coupled-mode equations in moving and motionless media.
VII. DISCUSSION In this paper, we assume a continuous range dependence

of the environmental parameters that results in continuous
mode coupling. This is a realistic model for most problems

obvious that the coupled-mode equations could have bee%f interest in environmental acoustics. In numerical simula-

obtained, without invoking any state vector, by manipulatingt'ons’ Itis of.tgn assumed ffor comp_u?tlonatlj convenience thﬁt
equations of linear acoustics in terms of acoustic pressur_g‘e waveguide consists of range-independent segments that

and oscillatory displacement. The rationale for introducing d°n at vertical interfaces! Mode coupling occurs then only
state vector is, then, to cast a necessarily tedious transform@t these interfaces. For each interface, the amplitudes of out-
tion of the equations of linear acoustics of moving media ing0iNg modes can be determined in terms of the amplitudes of
the most transparent and intuitive form possible. Of courseNcoming modes, using boundary conditions of continuity of
the definition Eq.(9) of the state vector is neither the only @ppropriate acoustic quantities at the interface. The mode
possible nor the only suitable one. For instance, one cafrthogonality relation Eq(12) obtained in Sec. Il is expected
define a state vector a¥=(¢,w;,dw;/dt,ws,dws/dt),  to be helpful in calculating mode spectrum transformation at
where ¢=p-+ pu,dw;, /dt. Then, one again obtains the or- a vertical interface in a moving medium. However, there
thogonality relation Eq(12) and the vector form E¢24) of ~ appears to be a fundamental problem in applying the discrete
the equations of motion, matrice8y ] and[By], of course, coupling model to waveguides with flow. Mass conservation
being different from those corresponding to the state vectorequires that the normal component of flow velocity be con-
®. When using the state vectdf, details of the calculations tinuous at the interfaceRef. 3, Sec. 7.3)2 Hence, the depth
differ, but the resulting coupled-mode equations and coudependence of the horizontal current velocity component,

The coupled-mode equatioii29) have been derived in
Secs. II-IV using the state vectdr (9). After the fact, it is
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Scattering from impedance gratings and surface wave formation
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The scattering problem of acoustic plane waves from comb-like impedance gratings on a rigid
surface has been investigated in this paper. A rigorous analytic approach for homogeneous
plane-wave incidence is presented based on the periodicity of the grating structure, in which the
problem was solved as a mixed boundary value problem and the scattered field was represented by
the tangent velocity difference across a partition wall of the grating. A singular integral equation has
been derived for the tangent velocity difference, which can directly be solved with the Gauss—
Chebyshev procedure. The resulting solution consists of a series of Bloch—Floquet (planes

bulk wave and surface wave modegth explicit expressions for the expansion coefficients. When

the grating period is much less than the incident wavelengt<(l), the grating structure is
equivalent to a plane impedance surface and no surface waves can be excited with homogeneous
plane-wave incidence. When the grating period is comparable to the incident wavelength, resonance
phenomena are predicted under certain conditions and surface waves can form, even with
homogeneous plane-wave incidence. The dispersion relation for surface waves has also been
examined. The impedance effects of the grating on the reflection and diffraction waves as well as on
the dispersion and formation of surface waves have been studied, with the acoustically hard grating
being the special case of the general impedance gratindg>Ol: 10.1121/1.1468879

PACS numbers: 43.20.El, 43.20.A0LT]

I. INTRODUCTION or gratings have received extensive study from both acoustic
and electromagnetic areas for nearly a century, starting from
Surface wave propagation above periodic or corrugate®ayleigh’s classical work’ Since a complete review on this
surfaces has been observed and studied for a long e sypject is not intended to be included in this work, we refer
the fields of acoustics and electromagnetics. For acoustic aifne reader to some relevant papers by Lippifamijliar, 1

coupled surface waves, model experiments by De?igle,Watermanzo Wirgin,2! DeSantc?23 and Holford?* and ref-
Daigle and Embletofi, and Hutchinson-Howorth and erences therein.

Attenborough have demonstrated the separation of an initial To the authors’ knowledge, existing theoretical treat-

Lor;lf burst mF’?h e:hsurfacel wave V\gth a sg)\{ver _sp;e?) and thﬁ1ents do not include the case of gratings with finite acoustic
Uik wave wi € reguiar sound speed in air. su Sequer”‘npedance. It seems that except for the geometry difference,

studies by Stinsoret al.® Daigle et al.® and Stinson and o e 5
Daigle! showed that the periodic surface structures could béhe problem of periodic liquid/solid interfac8s®may resuit

. . in a similar impedance boundary condition as we will discuss

modeled by an equivalent impedance plane at low frequer‘H it imolifies the interf foct the field i
cies so that analytical methddd? could be applied in cal- < ' "' ON€ SIMPines the inhtertace etiect on the el in
culating the surface and bulk wave fields. An intuitive de-e'ther medium with an eqm\_/alent impedance bounda_r)_/.
scription of surface-wave formation above periodic surfaceé"_oweve_r' such an equivalent |mpedan(;e boundary condition
was given by Tolsto}# in terms of the energy storing and will pe field dgpenden(nonlocally rgactlng moreover, the
releasing mechanism between the oscillating fields in th®"€Vious studies on the corrugated interface problem assume
concave regions of the structures and the surface waves righfnall corrugation heights to enable the Rayleigh approxima-
above the structures. With a low-frequency approximationtion. Most existing results on surface waves above grating
Tolstoy** used a simple effective boundary condition to re-structures have been obtained by making a low-frequency
place the complicated original one and obtained with pointapproximation(i.e., the incidence wavelength is much larger
source incidence the boundafyurface wave fields above than the grating perigdUsing this approximation, homoge-
slightly rough surfaces, a more general case of surface geeous plane-wave incidence cannot excite effective surface
ometry. Recently, a modal model method, which was initiallywaves over corrugated surfaces. It is unknown if this conclu-
developed to model optical or electromagnetic wave scattersion is also applicable to medium- or high-frequency cases.
ing by gratings, has been employed by Keldetsl® and  In this paper, the problem of scattering and surface-wave
Lauriks et al® to calculate the dispersion relation for acous-propagation above a comb-like, impedance grating under
tic surface waves above a grating. They compared the preslane-wave incidence is considered without using the low-
dicted results by this method with the measured results. frequency approximation. The problem was met when the

Bulk wave reflection and diffraction by periodic surfaces qythors investigated the potential application of acoustic sur-
face waves in the communication area, and it may also have
dElectronic mail: wenhao.zhu@nrc.ca useful applications in other areas.
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An analytical method is described based on the period- & ol
icity of the geometry to reduce the problem to a singular %‘q z
/

integral equation for the tangent velocity difference crossing A Impedance
a partition wall of the grating. Unlike the modal model wall
method!>*6 this approach results in a Bloch—Floquet wave _
expansion with explicit expression of the expansion coeffi- I | ﬁ |+a +|
cients. The Gauss—Chebyshev procedure is employed in T -
solving the singular integral equation numerically. It is dem- / x
onstrated through numerical simulations that homogeneous Rigid bottom
plane-wave incidences can excite dominant surface-wave

propagation over an infinite grating structure under certain (@)
conditions. In the following section, the grating scattering

formalism is derived for a comb-like grating geometry with p 09
an acoustic leakage impedance under plane wave incidence. o
In Sec. lll, a singular integral equation is obtained and \
solved numerically, from which the scattered bulk waves as '

well as surface waves can be calculated. Numerical results {;Zil;yg:"ixgga \
on scattered bulk waves are given in Sec. IV for the specular impedance Z :
reflection and the first-order diffraction. In particular, the 77&/7_> x
low-frequency approximation is examined and a comparison
is made to known results. One important issue in equating a
grating structure to a flat impedance surface is the “locally
reacting” property of the equivalent impedance. This is dis-
cussed in detail in the section. The surface-wave dispersion
is the topic of Sec. V, in which the exact solution is com-
pared with the simplified dispersion equations at low fre-
guencies ka<1). The impedance effects are also described.
Finally, the resonant phenomena among surface modes in the
grating scattering are predicted through several examples in
Sec. VI. It is explained how this can be used in exciting >
effective surface waves over a grating with plane-wave inci-
dence.

A

g

—
o
~

FIG. 1. The geometry of the impedance grating and incident waagthe
Il. PROBLEM FORMULATION AND SOLUTION FOR comb-like gratingib) the impedance model describing the acoustic leakage;

PLANE-WAVE INCIDENCE and(c) the equivalent full-space model.

Consider a comb-like structure vertically mounted on a
rigid infinite plane as shown in Fig(d). The partition walls, where the “+,” “* —” sides of the wall are defined in Fig.
assumed infinitely thifcompared to the wall spacihgnd  1(b), k is the wave number in air, and the time factor
extending infinitely in they direction, have the same height exp(—iwt) is omitted hereafter. The normal velocity continu-
and are equally spaced with periadWe assume the parti- ity Eq. (1b) comes from the material conservation law. With
tion walls are not perfect reflection plates but, instead, are &is model, the material property of the impedance grating is
kind of porous-plate structure with densely distributed smallcharacterized by &distributed constant impedancg, and
holes and/or gaps. A continuous acoustic leakage or impedvhen it is set to be infinite, Eq1) reduces to the boundary
ance model is employed to characterize such nonideal parteondition for acoustically hard walls. The grating structure is
tion walls, as shown in Fig.(b). In the model, the pressure insonified by a time-harmonic, homogeneous plane wave
difference across a wall will result in a nonzero particle ve-with an angle of incidenc#. As the structure is periodic in
locity through the wall, which is proportional to the pressureone dimensior(in x), only plane waves incident with wave
difference. Lettinge¢ be the velocity potentialP, the pres-  vectors lying in thex—z plane are considered, and the exten-
sure, andZ, the leakage-specific impedance normalized bysion to the case of a general plane-wave incidence is rela-
the characteristic impedanced) of air, we have the follow- tively simple. This leads to a two-dimensional scattering
ing boundary condition along a partition wall for the quanti- problem in the upper-half space.

ties defined on either side of the wall: The problem is equivalent to a full-space boundary
9 (P_—P.) value problem with a symmetry plane a0, where the
— =" =ik(¢.—¢_)IZ, (13 rigid bottom surface condition is automatically satisfied by
X, pcZ using a second incident plane wave, as shown in K. It
I I will be more convenient to consider the equivalent problem
= == (1b) in the full space than the original problem in the upper-half
Ix|_ x|, space, when a Fourier transform mis applied. In either
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case, we express the total velocity potential field as the surNow that ¢ is periodic, we need only consider here the so-
of the incident field and the scattered fieJtitote: quantities lution of Egs.(9) and(10) in the region|x|<a/2 in thex—z
with subscript ‘” are related to the full space shown in Fig. plane[see Fig. 1c)], with the periodic condition

1(c)]

a a
¢(XIZ):¢f(XlZ)! ZZO! (Za) l/f(_zyz):l/f(z,z),
where 1
o . o 24 x=—al2 2 x:a/2.
¢1(%,2)= ' (X,2) + $7°(X,2). (20)

Applying the Fourier transforms on the varialdé Eqg. (9),
The “incident field” in the full space is given bifig. 1(c)]  a general solution fopx|<a/2 can be obtained

(ﬁifn(X,Z) — eigoxfi 707 4 ei Eox+ingz

W(x.B)
=2 008 707)expli£0X), ® AL(B)eXp(y1X) +Ax( Bexpl ¥,x),  —al2=x=0,
whereé, is the incident wave number in thedirection and - B,(B)exp y1X)+Bo(B)expy,X), 0<x<al2,

no=Vk’— &, k=wlc, (4) (12

where w is the angular frequency ardthe sound speed in  where
air. Generally,£, and 5y can be complex numbers, but ini-

tially, only homogeneous plane waves are considered, so E(X:B):f w(x,2)e P2 dz, (13)
&=ksind, ny=kcosé. (5) -

Then, from Egs(1) and(2), the scattered field is determined y12= —i&EVBP—KP=—i&*y. (14)

by

By using the periodic conditiofil1), we have

A1(B)exply1X) + Ax(B)exp yoX),

ﬁ(l)SC(X:,Z) ik . sc . — — =x<
e F L - 67 2] 8/2=x=0,

V2¢:%(x,2) +k?p7%(x,2) =0, (6)

ax W(x,B)=
| PBIZY p(B)expt ya(x—a))+ As( Blex yalx—a)),
dpy" (Xn,2) _ : o=x<al2.
=— = —2i&cogne)eon, |Z|=I, (7 15
AP,y 7)) IPTUXT ,2) " - Then, applying the continuity conditiofi0b) results in
= ! z goo, . — .
X X AL(B)(y1tié&o)[e 2= 1]+ Ax(B)(y2+iéo)
where x,=na, n=0,%x1,...%, are the locations of the X[e"722—1]=0 (16)
walls. Equation(7b) is set to be valid for any, since the '
scattered velocity field is still continuous whérj>1. Itis  Let
seen from Eq(7) that the boundary geometry is periodicxin .
and so is the boundary condition, except for the term Al(B)=A A(B)Iexp( = y.a) —1],
exp(&x). This implies that the Bloch—Floquet thebfymay As(B) = A(B)Y _ 1
be applied here and the scattered field should have a term 2(B)=2AAB) JTexp(—723) 11,
that is in common with the incident field then from Eq.(14), Eq. (16) is automatically satisfied and
S x2)=p(x DT, p(xraz=u(xz), (@ 19 becomes
S0 (x,z) has the same periodicity as the grating and satis- FXB) FA(B)e R (x,8), —al2=x<0, an
fies the following governing equations: ¢ IA(B)e O, (x,B),  O=x=al2,
V2P(x,2) + 2 &odh(X,2)/ 9x+ (K2 = £5) h(x,2) =0, (9)
where
and "
cosh (x+a)y]—coshxy)e '¢?
llb( + ) + + Fl(xvﬁ): . ’ (18@
———— +i&u(0 Z)— [¢/(o 2)=(07,2)] cogaéy) —coshiay)
. 402~ costi(x—a)y]
=—2i¢cognoz), |zZ|=I, (109 - cosfixy)e
0 02), 7| Fo(X,3) coTaE) —Cosiay) (18b
ap(0~,2) w< 0",2) N . .
I ——— tiép(07,2)= ————+i&(07,2), Before applying the boundary conditigia) or (108 to de-
termineA(B), we introduce a new unknown functidgz) as
|z|<ce. (10b  follows:
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ap:(0",2) P07 ,2) 9 $C— $3%(x,2)
R L X o

f(z)=

9 :f f(t>[ > el B (= 2i)sin( Bt)] { dt,
0 m=—o |aBm
Then, f(z)=0 when|z|>1, andf(z) is unknown whenz|
<I|. The Fourier transform of (z) gives z=l, (249
| _ - _ and
f f(z)e*'ﬂzdz=J f(z)e 'A?2dz
- - o= gi5(x2)
=iBLy(0",B)—¢(0,B)]=iBA(B), | Z an . ,
=f ()] 2 — e (sgrz—t)efn""
(20) 0 m=—o iaﬁm
where Eq.(17) has been used in deriving the last equation. B (2h0 1
Thus, the unknowrA(B) can be related té(z) through —e/Pm(zr U]+ >[sgnz=t)—1]p(x) dt,
0=zs<l, (24b)

1 ! A
A(B)= mf_lf(z)e"ﬁzdz. (21
where sgnf) is the signum functionp(x) is given by Eg.

The functionf (z) has a physical meaning. From E@9) and (A7) @hday and By, are given[see Eq(A2)] by

the incident field continuity, it represents the tangent velocity

jump across any impedance wall, except for a trivial factor B 2mm _ Vk? = ar, k2> ar,
exp(&na). In terms of f(z) and by applying the inverse am=Eot — 0 Bm= iVa2— K2, K2<a?'
Fourier transform, we have "
m==+1,.. .+, (25
4 1 = elhz=h
P(X,z)eé0*= P f(t)f F(X,) dgdt, It is obvious from Eqs(248 and(24b) that the two solutions
el o B (224 defined in the two regions af>| and 0<z<I| are continu-
ous atz=|
where G501 = 5.
— =X
F(X,ﬁ):[ Fi(x.f), na-alz=x=na, (22b) However, the continuity of their derivatives about theo-
Fa(x,8), nasxsnata/2, ordinate is not as straightforward. We first write the deriva-

) ) tions of Eqs.(249 and(24b) with respect taz
and wherdr, (x, 8) are given by Eq(18). A solution of Eq.

(6) represented by E@229 satisfies the pseudoperiodic con- I3E(x,2)
dition Eqg. (8) and the boundary condition E¢¢b), but gen- ——
erally is not symmetric abouwt=0. The symmetric scattered
field ¢3¢, which is required since the incident field E&) fl { *

0z

(44 . .
for the full spacdFig. 1(c)] is symmetric abour=0, can be f(t)] >, ia—mg—e"’m”'ﬁmz[(z,[}m)sin(ﬁmt)] dt,
obtained by simply choosing the even part of E2ZRa with 0 m=="= 1238
respect taz
z=1, (269
sc _ + — i £oX
¢7(X,2)=[(X,2) + (x,—2)]e and
1 fl o
=— f(t)f F(X,w) 9bSE(X 2 | »
4mi Jo - —¢f2( ' ):f f(t){ E i m2 eiamX(ile)[eiBm\Zfﬂ
eI B(Z—1) _ giB(z+1) 4 o=iB(z+1) _ g=if(z—1) Iz 0 m=« iaB,
X dgdt, o
B i ] 20, .
—e'Pn(z* 0] dt+f(2) D glam
(23 ] ( m;w 1aBy,

where use has been made of the fact th@) is odd in
[—1,17 as ¢ is even. The four inverse Fourier transforms
(inner integrals in Eq. (23) can be completed by using a
contour integration and the residue theorem in the usual wayAs seen from Eqs(26a and (26b), the derivatives of the
The results are given in Appendix A. Then, from EA11), fields will be continuous if and only if the content in the
we obtain bracket of the second term in E@6b) is equal to zero, i.e.,

+p(x)|, z=lI. (26b)
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>

m=—o

am
iap2,

elamX= _

p(x), (27)

wherep(x) is given by Eq.(A7). This has been proven in
Appendix B, with the aid of Poisson’s summation formula.
Therefore, the derivatives with respectzare also continu-
ous atz=|1

Iz (%1 &
gz 2

%m TapX(i
m< o Iaﬁz e-m (Iﬂm)
- m
X flf(t)[eiﬁm“*t)_eilgm(l+t)]dt
0

_dgi(x,])
9z

Now, applying the impedance boundary conditigta
or (109 to Eq. (24b and considering the symmetry of the
right-hand-side term of Eq(7a) or (103 aboutz=0, we
obtain an integral equation fdi(t) in the upper-half region
of |z|=I

| * a2
_m _ iBmlz—t| _ Al Bm(z+1)
fofm[m_E_w L [sanz—tye elfnlz0)
(k/2)sin(ak) ik
~lsgriz=t—1] cogaéy) —cogak) * fHdt
in O,
——M)f—(z)z—ZigO coq 79z), 0=z=<l. (28

X

Oncef(t) is obtained, the fields above the grating and insid
the slots can be determined by E¢®4a and(24b), respec-

2

kK2—ai, —M;=m=M,,
Bn=1 ro—m (31)
ivap,—k%, —Mi>m, or, m>M,,
with
a . a .
Mlzk(lJrsme) , M2=[X(l—sm0) , (32

where\ is the wavelength of the incident wave ajg] de-
notes the largest integer m Therefore, the scattered field
consists of(i) plane bulk wavedpositive realg,,), which
propagate away from the grating; we call them “diffraction
modes,” and(ii) evanescent waves decaying in theirec-

tion (positive imaginaryB,,), which propagate in a layer im-
mediately above the grating and are usually referred to as
“space harmonics” or “surface modes.” For a given grating
structure, a mode of orden can be either a diffraction mode
or a surface mode, depending on the incident field and fre-
quency. The scattered far field is a linear combination of all
possible(finite) diffraction modes. As will be seen, the sur-
face modes typically have much smaller amplitude than the
diffraction modes, except when certain conditions are met. It
is also noted that among the diffraction modes, the first term
in Eq. (29) (the zero-order modealways exists with homo-
geneous plane-wave incidence and is called the “reflection
wave” hereafter since it is along the specular-reflection
direction.

The Bloch—Floquet expansiai29) has been called the
“Rayleigh expansion” in the literatur€=2*In the original
Rayleigh procedure, a field expansion equivalent to(E6).
was assumed valid in both regions<@<I| andz>1 (Ray-
leigh hypothesis with unknown expansion coefficients.
Here, two regional solutions are obtained and the mode am-

Jlitudesd ,, in both regions are given explicitly, though with

a function to be determined by an integral equation. It is also

tively. Here, we are interested in the scattered field above thBOted that in deriving Eqs24), (28), and (29), we did not

grating in the original upper-half spafig. 1(a)]. From Egs.
(2) and (249, this can be expressed in the form of the
Bloch—Floquet expansiéh by exchanging the order of the
integral and the series in ER43

¢SC(X,Z) = (i)(xlz) — ei§ox—i 70Z

:(1+q)0)ei§0>(+ir]oz

S et o=,

(29
M0
where
D = Zamf'f i d 30
m__ﬁ 0 (t)sm(lgmt) t. ( )

The scattered field inside the slots<@<I) can also be
expressed by a similar expansion from E84b). In Egs.
(29) and (30), for a given homogeneous plane-wave inci-
dence and the grating peri@l we generally have

2000 J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002

actually specify the incidence field being a homogeneous

plane wave. In other word, these equations are still valid for

inhomogeneous plane wave incidences, as long as the inci-
dent fields have the pseudoperiodicity as defined by(8q.

lll. THE SINGULAR INTEGRAL EQUATION

After checking the series in the integral equati@g) it
was found that the series converges slowlyzatt, since
aml By— —1 asm— * o, By separating the slowly conver-
gent parts from the series, we will obtain a singular term
from the kernel and turn E@28) into a Cauchy-type singular
integral equation. The energy conservation law is also for-
mulated in this section in order to verify both the solution
formalism adopted in the preceding section and the numeri-
cal algorithm to be described next.

A. Cauchy-type singular integral equation

First, the series in the kernel of E@8) can be rewritten
as follows:

Zhu et al.: Impedance grating scattering and surface waves



o0 2

2 a2 [Sgr(z t)elgbm\z t|_ IBm(Z+t)]
m=—x Bm

2 2
_2 [ >[sgnz—t)e iBmlz— t\_ IBm(Z+I]+IB_[Sgr.(Z t)el,B mlz—t] _ el - m(2“]+2[sgr(z t)e—my\z t|

—m

& . . 2 sgriz—t) 2 2 2 4t
_ a—mu(z+t) =Y _ inolz—t| _ aing(z+t)7 _ _
€ 1p - plsgrz= e i - grr—1 ~ g 1|V yz—0 wern| =)
(33
T
where use has been made of *
f(1)=(1-t%12) 12> CTp_1(t) (37)
«© 1 k:1
—my|z—t| — —
mzzl € gT—y Vv=2mla 34 in Eq. (35) to obtain
Then, substituting Eq.33) into Eq. (28), we obtain Z ajct 5]k>ck bj, j=12..%, (38)
I2tf(t) 1 I
1 1l
=—i2¢&yc09 792), O=<z=<l, (35 ajk=aJojo[Ko(z—t)JrKl(z—t)]
where Nl (DU _,(2)dtd (39
e — _ 4 Z
2 m 2k—1 2j—-2

Ko(z—1)= —[sgr(z—t)e 7z~ —glmo(z+ 1]
7o

b= —2i goJ; cog 702) V1—2°/1°Uy;_5(2)dz,  (39b)

—[sgniz—t)—1]

(ak/2)sin(ak) ik
cogaf,)—cogak)  Z
2 sgriz—t) 2 } Ty(t)=cogk arccost/I)], (409
- v[z—t[_1q  av(z+t) _
€ 1 et#h-1 Uj(z)=sin(j +1)arccosz/l)]/sinarccosz/l)], (40b)

(369 are the first and second Chebyshev polynomials, respec-
tively, and 6;; is the Kronecker delta. The system of linear
. ) equationg38) is numerically stable because of the dominant
X v Bzt aiB(z4D) diagonal elementithe &, term), resulting from the singular-
1(z=1)= E [—;m[sgr(z te’tm eme ] ity separation process. It will be truncated and solved for the
5 coefficientsCy . The scattered wave amplitudes are then cal-
X—m el Bzt B m(z4D) culated from Eqs(29) and(30). In the actual calculation, the
+ ﬁzim[sgr(z Herom ] series in Eq.(36b) is found to be nearly convergent after
10-15 termq(it is truncated at 15 termsThe series in ex-
pression(37) shows almost no difference in the numerical
test results after 25 terni# is truncated at 26 terms

and

2 2
* v(z—t) v(z+t)|

+2[sgrz—t)e" Mzt _g=mrz+]L - (36h)

and use has been made of the identity zey/|z—t|=1/(z
—1).

Now, the kernel function&, ,(z—t) are no longer sin-
gular ast—z. Equation(35) is a Cauchy-type singular inte- One of the commonly used approaches for assessing the
gral equation of the first kind that has been widely studfed. accuracy of the numerical solution for wave propagation
A convenient numerical approach to solving E85) is the  problems is the energy conservation law. Consider the rect-
Gauss—Chebyshev proceddrédere, we only give the final angular volume consisting of the region shown in Fi¢g)1
linear equations after using the procedure without the detdashed lineswith a unit extension in the direction. Be-
tailed derivations. cause of the symmetry of the problem abpst0, there is no

As is well known in edge-scattering problems, at anenergy exchange between the upper-half and the lower-half
edge tip, the scattered velocity field has an?  portions of the region. The rate of energy transmission into
singularity®® We set the volume for time-harmonic fields can be expressed as

B. Power transmission and energy conservation
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where a *%” denotes complex conjugatiors consists of the
boundary surfacegs=a/2 with O<sz<L, z=L with —a/2
<x=a/2, andx= —a/2 with O<z=<L (the boundargz=0 is
not included because of the symmetr§ince ¢ is periodic
in x with the perioda except for the factor expfyx), we have

reactance /

Reactance and resistance (normalized)

% o* — % * 12r
ox —al2 ox a2
X=a X= 0.8t
Thus, the integrals or=a/2 andx= —a/2 will cancel each
other. Finally, Eq.(41) is reduced to an integral ar=L o 1
resistance
pa) al2 . J ) 0.0F \?.¢‘ R L R A AL NN
E=—"—Im (¢In+¢SC)*_(¢In+¢SC)dX
2 —al Jz 04 . . . X , . .
M, ) 10 20 30 40 50 60 70 80 90
pw 2 2 Angle of incidence, 6 (deg)
== 5] ol 1+ D[+ EM Bl @l “ =10,
m;#o 1 FIG. 2. Equivalent impedance versus angle of incidente 1200 Hz,
a=0.015m,1=0.0256 m).
(42

in which only the diffraction mode Contn_butlons_ are taken \a>1+sind, (45)
into account as the surface modes vanish wheis large

enough. When the leakage impedadaef the partition walls  then from Eq.(32), there is only one diffraction mode that
is purely reactive or if the walls are rigid, i.e., no energy loss,can exist in the scattered field expansi@#), i.e., the reflec-
the total energy in the volume should be conserved and th#on wave (m=0). The far field can be determined by ne-
net energy flux into the volume should be zero. Thereforeglecting all the surface modéspace harmonig¢sn Eq. (29)
the following relation must hold: e X,2) = XQli £0X— i 7p2)

M, M, . .
|1+ ®g|2+ > ﬁ|<I>m|2= > En=1, (43 +(1+ Do) expli ox +i702). (46)

m:;o 1 7o o The first term is the incident plane wave; the second term,
where the reflection wave, consists of the mirror reflection from the

rigid bottom and a termd®,) due to the existence of the

Bm impedance grating structure.
= 2 = — 2 . . - . . .

Eo=[1+®o|%, En= 70 ||, (44) In view of the similarity of this case to the impedance

surface reflection, we expect that an equivalent impedance
Value can be defined for the grating. We assume a virtual
impedance plane is located &1, with a constant imped-
anceZqq (normalized by the impedance of aic). Then, the
impedance boundary condition will be

are defined as the reflection energy efficiency and diffractio
energy efficiency for each orden (note that the incident
wave has unit amplitude The condition(43), though not
sufficient, is necessary for a correct solution and will be
checked frequently in the following numerical results.

d¢p ik
E + Z_ =0. (47)
IV. NUMERICAL RESULTS ON SCATTERED BULK eq z=|
WAVES AND EQUIVALENT IMPEDANCE Substituting Eq(46) into the above equation yields
SURFACE )
- . . k| 1+ Rge'270l
Since there are many theoretical and experimental re- Zgq= 77— T-R.&270 Ro=1+®,. (48)
o/ 1= Ro

sults on bulk wave reflection and diffraction from acousti-
cally hard or -soft periodic surfaces, only two cases are conThe equivalent impedance has been calculated as a function
sidered here, i.e., the specular reflection alone and then ttaf the angle of incidence and is shown in Fig. 2 for four
reflection plus the first-order diffraction. Attention is focused different impedance values of the partition walld=o,
on the equivalent impedance surface and the related “loca?.6, 1.3, and 0.8). The calculation is made using
reaction” condition, the leakage impedance effects of the=340 m/s,f=1200 Hz,|=0.0256 m, anca=0.015m. The
grating on the reflection and diffraction waves, and otheifigure shows that the reactance 8f, increases a¥ de-
issues related to the surface waves. creasegmore acoustic leakageat large angles of incidence.
The resistive part oE¢ is zero becausg is assumed to be
purely reactive.

For homogeneous plane-wave incidence, if the fre- Daigle et al® suggested a formula for calculating the
guency is low enough that equivalent impedance of a lattice structure with a lumped,

A. The reflection wave: Equivalent impedance surface
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Angle of incidence, 6 (deg) FIG. 4. Relative difference between E@48) and(49) varying with kl for

FIG. 3. Imaginary component of the equivalent impedance veestr two I/a ratios: 1.6 and 20, and several angles of inciderte ¢).

threel/a ratios and threé/\ ratios, respectively4=x).

) N ) viation, the difference between Ed48) and(49) divided by

leakage |mpedance. on each partition wall. By setting th%q_ (49), versus the normalized frequen&y for two I/a
bottom surface as rigid and_usmg the same grating paranatios (1.6 and 20 and several angles of incidence. The re-
eters as here, their EQAL7) gives an equivalent impedance gyits are given in Fig. 4. While significant drops in the rela-
thqt is plotted in Fig. 2 as WeI_I for comparison. It should betje deviation are observed in the figure as tha ratio
pointed out that the leakage impedance values used for thgyanges from 1.6 to 20, the relative deviation remains nearly
walls of the gratings are different for the two cases. H&re, gnstant for lowkl values and for the largéra ratio.
is a continually distributed parameter, whereas in Ref. 9 itis ~ p straightforward explanation of why the grating struc-
a lumped parametémcluding a nonzero resistancgefined  re hecomes locally reacting fofa>1 is that the interac-
at the center of each wall. Nevertheless, the two procedur&gyn of the fields between adjacent slots of a grating is re-
predict a similar increasing trend of the equivalent imped-gyced as the slot depth is much larger than the slot width,
ance(reactancewith the angle of incidence, their reactance gnq therefore each slot's response to an incident field is ba-
curve essentially matching our calculation ©=1.3. sically isolated(locally reacting. It then follows that since

In general, the equivalent impedance of a grating structhe acoustic leakage of the partition walls actually increases
ture depends on the angle of incideres seen in Fig. 2 {he interactions between adjacent slots, an impedance grating

Therefore, the impedance at a given frequency depends Qfjith g finite Z will be less locally reacting compared to a
the acoustic field above the structure and the surface is non-

locally reacting. However, real material surfaces are often
treated as locally reacting, with their impedance values inde-  ;
pendent of the acoustic field. It is of interest to find the
conditions under which the grating structure can be equiva- ,
lent to a flat, locally reacting impedance surface. For simplic- 4 gL~
ity, only rigid gratings are considered in the following. We

1.8

first examine a special case of Eg8), that of normal inci- 1.4r
dence. From Eq945) and(28), we haveéy=0, o=k, and 19l
f(z)=0, therefored,=0 and Eq.(48) reduces to the well-

known resulté* for normal incidence §° 1
Zeg=i cOt(KI). (49) 0.8

Equation(49) is generally assumed to be applicable as well
to oblique incidence®® whenka<1. The validation of this 0.4}
assumption has been tested by calcula#iggfrom both Eq.
(48) and Eq.(49). The dependence on angle of incidence is
shown in Fig. 3, for various ratioda andI/\x. Whenl/a 0 . . . . . : ,
>1 and\/a>1, the grating structure exhibits nearly locally 0 1 20 30 4 5 60 70 & 90
reacting behavior with the largest deviation occurring at Angle of incidence, 6 (deg)

grazing_inciden_ce, and E¢49) is a good approximation_for FIG. 5. The magnitude of the mode amplitudk,| versus angle of inci-
the equivalent impedance. We also calculate the relative detence(same parameters as in Fig. 2

0.2
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TABLE I. Amplitudes of the surface mod@ne diffraction wavi then them= —1 order mode is a diffraction mode. The far
field can be expressed as

Z=x, kl=0.57,0=34°

@, explB,) D, expiB_.l) dra(X,2) =expli EgX—i79Z) + Ry eXpi {oX +i 1702)
Real Imaginary Real Imaginary +O_explia_1x+iB_412), (5)
m=1 101x107? 1.64x10°° -1.11x102 —1.80x107° whereRy=1+®y and® _, are the reflection and diffraction
2 341 10’2 5.51x 10’j‘1 —3.58x 10’: ~5.79% 10’?1 coefficients, respectively. Figure 6 shows the energy-
j i-gg 18_3 i-g;’; 18_4 *1-357?( 18_3 *i-gz 18_4 efficiency plots for these two modes as a functiorkipffor
. . - . - . _ _ o -
5 BBS10Y  L010-* —B8IX10¢  —110¢10- )\_/g— 1.2,. 0=37.6°, and threg different values @f For the
6 4.62¢10°° 746x10°° —471x10°*  —7.61x10°° rl|g|d grating, as seen from Flg'(@, the two modes alt.erna-
7 334104  540x10° —-3.40<10% —550x10° tively dominate the scattered field as the grating height var-
8 249%10* 402¢10°° -253x10*  -4.00x10°  jes. Their energy efficiencies demonstrate the periodicity
— 4 —5 — 4 —5 - . -
9 1.90<10 3.07x10 —1.9310 —3.12x10 over the range of the figure with a period of about 16. The
10  147%10*% 238105 149104 —-241x10°

Brewster-angle anomalyis observed akl~7.5 and 23.5.

At these points, the specular reflection is extinguished and all
the energy is converted into the diffraction mode in the back-
scattering direction. A very similar result was obtained by
DeSanto[Fig. 5@ of Ref. 22, who solved the scattering
problem of a rigid, comb-like grating by using the Bloch—
Eloguet expansion and a meromorphic function analysis.
\%Ihen the wall impedance has finite reactance, Fig®.#nd

rigid grating with the samé/a ratio (as can be seen in Fig.
2).

Figure 5 shows the variation of mode amplitulig with
angle of incidence for four different values of the leakage
impedance, using the same structural parameters as in Fig.
S’.“a”er reactange(gmore leakagklead to lower-mode am- ), the periodicity inkl of the energy efficiencies becomes
plitudes, but the impedance has no effect on the normal an

ing incid F | incid due 1o th rge. The Brewster-angle anomaly first occur&lat 12 for
grazing incidence. For normal incidence, due to the symme, i o4 o~ 16 for z=2i, respectively.

try,”there t'ﬁ nobtrﬂnsverse Y¢LOC't31|aC?SS the .Ieak.y pgrntmn The amplitudes of the surface modes for thenth or-
wa sb?o_ &y eltave ?S nal tw?hs. Llordgra2|_ng Ian!f e?geder,mzl,...,lo, are given in Table I, using the same param-
We obtain a resuft analogous 1o the Lioyds mirror efiect in g0 .o oo abovéFig. 6) for the Z=« case. It is of interest to

optics, which requiresb, to be —2 for all values of wall note that since then=—1 order becomes the diffraction
impedance. o .
. mode, it is now the pair of ®,expiB,) and
_Ihe 1a(r)npl|tude§ of thg s_lIJ_rfslce :n?de thtprder, _:gr d_,_1expliB_n_1l) that has nearly the same complex val-
T(;0256 ’ |elr8 0%\5“3” in dZa—oi | ct)rr1 at %Ia '?r? Wi ues but opposite signs. As a consequence, the total field due
o m,i=0.0%om, andz=c. In he 1able, e eXpo- 1, e gyrface modes does not show significant net energy
nential factor is introduced because we intend to calculatg " inor a5 in the preceding subsection. Finally, the en-

thed f|eIQS ofbthe sugacieﬂmnggdg? |r: BEEQ%)E:}?IT;”% atz=I ergy conservation conditiof#3) has been tested for this case
and going above, s®pe *r’= (P pe'"m)e - ASSEEN, 414 is satisfied with an accuracy of aboutl0 3, for the

the amplitudes® ., exp(B,) and ®_,expiB_.) have - ;
nearly the same magnitudé®al and imaginarnybut oppo- figid and pure reactance gratings.

site signs, and they are much smaller than unity, the incident
wave amplitude. This has been observed for different angle¥% SURFACE-WAVE DISPERSION (ka<1)

of incidence and frequencies that satisfy the inequality of EQ.  £4r 4 comb-like grating structure with very smid, a

(45). Therefore, each pair of such modesrf) will form a  gjmnje analysigfor example, in Ref. 18gives the following
small standing wave immediately above the grating. The todispersion relation:

tal field of all surface modes does not show a net energy

flow. Eo=ky1+tarf(kl). (52)

The energy conservation condition was examined for thepis approximate dispersion equation may also be obtained
numerical results presented in this section. Now, the fact thgt the boundary condition given for the equivalent imped-

only the reflection wave exists in the scattered far field, Edgnce surface defined by EG9). It has a banded-frequency
(43) says that the incident energy is equal to the reﬂecnor&tructure, i.e., passbandsir>ki>(n+1/2)w and stop-

energy, o1+ ®,|2=1. This has been tested and is satisfiedy 5 ngs: a+1/2)m>kl>(n+1)m, which are equal width.
to within +10"*2 for the rigid and pure reactance gratings. \gwever, this approach does not account for the effects of
the grating period.

B. Two diffraction modes: The reflection mode plus According to Tolstoy's explanatidd of the surface-

the m=—1 order diffraction mode wave formation mechanism from the energy-exchange view-

point, the existence of surface waves guided by a periodic
orrugated surface corresponds to an eigenvalue problem

that has nontrivial solutions with the absence of incident

waves. Just as the natural frequencies of a vibrational system

can be determined by neglecting the excitation forces in the

1+sind>N/a>maxX1—sind, (1+sing)/2], (50 system equations, the dispersion relation for surface waves

An interesting case of grating scattering for homoge-
neous plane-wave incidence arises when there exists one d
fraction mode in addition to the reflection wave. When the
angle of incidence and frequency satisfy
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over a periodic surface structure is an intrinsic property ofthus obtaining the dispersion relatigg(k). We start by as-

the air—structure system and is independent of the incidersuming rigid partition walls Z=<). A sequence of real
field. Thus, Eq(35) or (38) can be used to predict the phase roots &; is obtained, each root separated from the next by
velocities of surface waves over an impedance grating by w/a. This is the same spacing as that between successive

neglecting the right-hand-side term. am= &+ 2mm/a. The sequence of rootg has a one-to-one
For eachkl, the termé&, was systematically varied to correspondence with the set of wave numbfeg,,m=0,
determine the roots of +1,+...}. For this case of smala, we select ag, the root

&; that corresponds to the limitinga(~0) curve of Eq(52).
Taking the case dffa=12, the dispersion relation shown in
Fig. 7 is obtained. The surface-wave dispersion has a
TABLE Il. Amplitudes of the surface modgwo diffraction waves passband/stop-band structure. For thén passbandnm
>Kkl>(n+1/2)#. The dispersion curve does not quite fill all
of the passbhand except in the limit af~0. All curves are

Pm exp(rl) P —m exp(B-) above the straight dashed liggl =kI, and therefore the sur-
Real Imaginary Real Imaginary ~ face waves propagate slower than sound in free air. Since,
from Eq. (5) we have sirg>1, this surface wave cannot be

de((ajk+ 77/45”()]:0, (53)

Z=om, kl=11.0,0=37.6°

m=1  5.23x10°?2 —535<102 0.691 0.319 . D
5 151x102 —156<102 —539x102 551x 102 excited by a homogeneous incident plane wave.
3 7.09x10°3 —7.39x10°3 —153x10°2 1.59x10 2 The simple approach in Eq52) can be improved to
4  406x10°% —4.24x10° -7.17x10° 7.47x10°° include the effect of the grating period, introducing a modi-
5 25810°% -269<10°%  -4.09x107°  4.27x10°° fied formuld®?
6 1.74¢<10°° —-1.82x10°% -2.60x10°° 2.71x10°%
7 123%10°°% —129x10° —-1.76x10°°  1.83x10°% i an2\]
8 894104 —935x10% —1.24x10°3 1.29x10°% £o= k\/1+tan2 kil 1— (54)
9 6.64x10°% —6.94x10°* —8.99x10°*  9.40x10°4 I rl
0

5.00<10°% —5.23x10* —6.67x10* 6.97x10°*

=

Figure 8 shows the comparison of the exact results to the
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VI. SURFACE WAVE DOMINATED BY A HIGH-ORDER
SURFACE MODE
12}
At low frequencies Ka<1), homogeneous plane waves
cannot excite effective surface waves over a grating struc-
ture, unless there are some defects in the graing., dis-
continuitie3 which can cause energy redistribution among
the modes. We now consider high frequencies for which the
incident wavelength is comparable to the grating period. In
the following, we will show through numerical examples that
under certain conditions, related to the resonance
anomalies? a specific surface mode of higher ordém(
>0) can be strongly excited and net surface-wave propaga-
tion can be obtained.

10f

&}

2.5m A. The resonance of a surface mode under
homogeneous plane-wave incidence

FIG. 7. Predicted dispersion curvéslid) of surface waves above a rigid Consider homogeneous plane-wave incidence with a
grating surface £=, I/a=12), showing the passband and stop-band wavelength\ that is comparable to the grating periadAs
structure(the circles indicate the starting points of the cujves sing= §o/k, the normalized wave number in thalirection of

the incident wave, approaches a pole of the amplitude coef-
approximate formulags2) and(54) for the dispersion curve ficient of some surface modsee Eq.(30)], this mode gen-
in the base passband. In the case of a rigid grating, the agrally tends to become dominant and a net surface wave is
proximate formulas show good agreement with the exact reéxpected to propagate along the grating surface. The excep-
sult in the lower-frequency portion of the band, but, in thetion is when there is a zero near the pole, offsetting the effect
higher-frequency portion, deviations are apparent. While Eqof the pole. First, consider the case in Sec. IV A, where the
(54) is as simple as Eq52), it gives better agreement than only diffraction mode is the reflection wave, i.e., the zero-
the latter since it includes the effect of grating period. But,order mode, and the conditio@5) holds. From Eqs(30)
both formulas overestimate the dispersion of the surfac&nd(25), we see that as sihapproaches/a—1, 8_1—0,
waves in that portion. Figure 8 also shows that the impedand the amplituded _, of them= —1 order mode becomes
ance of the partition walls has an important effect on thevery large. Here, for sift to approach\/a—1, we need to
dispersion. Compared to the rigid grating case, the inductivéave 1<A/a<2 (only the case o#>0 is considered since
reactance results in less dispersion. Adding resistance tenélse problem is symmetrical about=0). For example,
to offset the effect of the reactance. Therefore, the inductivéhoosingh/a=1.92, we find that at,= arcsin(0.92)=67°,
reactance in the impedance grating could help in reducing—1=0, and therefore, sig, corresponds to a real pole of
the propagation distortion of signals carried by surfaceP-1. To compare this resonant surface mode with the re-
waves over the grating. flection wave and to see the near-field distribution, we cal-

culate the vertical profile of the scattered sound field above

the grating[the expansion Eq29) is truncated am= +15

Eq.(52) in the actual calculation Figure 9 shows the scattered field

- Eféfj"‘z):w magnitude as a function of height/(=1) for several angles
5| — exact,z=4+4i ; ] of incidence(the incident wave, and therefore the reflection
—o— exact,Z=0+4i F wave, has unit amplitudeAs can be seen, the scattered field

magnitude shows basically a bulk-wave feature at a small
angle of incidence =16°). The surface wave fiel¢the
m=—1 orde) then grows asd increases, and finally the
surface wave exceeds the reflection wavé@att4°. Figure

10 gives the amplitude variation of the first eight surface
modes versus angle of incidence. Tine= — 1 order surface
mode becomes resonance astsapproaches sig,, while

the amplitudes of the other surface modes remain relatively
constant. It is also noted that when gins very close to
sin#,, 1/8_,—, or the vertical extent of the surface wave
becomes very large. Eventually, when the inequality (E§)
becomes equality, the Rayleigh wavelength is thus obtained

0 0.1m 0.27 0.3 047 0.57 for which them=—1 order surface mode just turns to the
Kkl m= —1 order diffraction mode at grazing angle; this corre-
FIG. 8. Comparison of the dispersion curves obtained from E&f3.and sponds tf’ the Rfaylellgh anoméi‘y..
(54), and from the exact solution for three different impedance vallies ( The integration in Eq(30), which depends on the grat-
=4). ing depthl and the functiorf(t), contributes to the pole/zero
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FIG. 9. Vertical profile of the magnitude of the scattered sound fitild FIG. 11. Vertical profile of the magnitude of the scattered sound fible

reflection wave plus space harmonicabove a rigid grating. =<, reflection wave plus space harmonicabove a rigid grating. Z=oc,
a=0.06 m,1=0.128 m,f=2.95 kHz.) a=0.06 m,|=0.08 m,f=2.95 kHz.)

distribution of the mode amplitudé®,,. Consider a second since the mode amplitude does not grow to infinity as in the
example for a smaller grating depth. Figures 11 and 12, recase of the real pole in the first example when 6in
spectively, show the vertical profile of the magnitude of the—sin#,. To explain this, le=sing and consider the com-
scattered sound field and each mode’s amplitude versysiex mode amplitude functio®_;=® _;(¢). With the aid
angle of incidence. As seen from the figures, the surfacef the analytical continuationp _,(¢) can be defined in the
wave is most strongly excited &t 48° and is dominated by complex planel. Then, some poles and zeros &f ,(?)
them=—1 order mode. Close to the surface, the amplitudearise as complex numbers. To precisely locate these poles
of this mode is five times higher than that of the reflectionand zeros, the integration in EQO) needs to be completed.
wave. Obviously from Fig. 12, the resonance positiondsin ~ As the real-valued sifl approaches the Rgj of any com-

is shifted from the sin(67°) to sin(48°), though the ratia plex pole,, ®_; will become pronouncednot infinity).

has been kept the same. This means that changes in the gr@ihis corresponds to a resonance anorfalyhere it is now a

ing depthl can cause, through the integration in Eg0), surface mode instead of a diffraction mode that becomes
relocations of the poles and zerfis this case, a zero is resonance.

moved near the sin(67°) and a new pole position is located The influence of the leakage impedance of the grating of
to sin(48°)]. This new pole is actually a complex number, the resonance of the surface mode._(;) is given in Fig. 13,

16 , . . ' ; 7 - - - - - Ea—
— m=+1

. —— m=-2

1.4 1 sl e
| —— m=-3

1.2 E | -+ m=+3
5t ' —— m=-4

v m=+4

0.8

0.6

Amplitudes of space harmonics
Amplitudes of space harmonics

04

0.2

70
Angle of incidence, 6 (deg) Angle of incidence, ¢ (deg)
FIG. 10. The amplitudepd ,, exp(B.)| of the first eight space harmonics, FIG. 12. The amplitudefd, exp(B,l)| of the first eight space harmonics,
showing them=—1 order surface mode becomes pronounced as- showing them=—1 order surface mode becomes resonancé@-=a#8°.
creases.{==, a=0.06 m,|=0.128 m,f=2.95 kHz.) (Z=», a=0.06 m,|=0.08 m, f=2.95 kHz.)
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FIG. 13. The amplitudéd _; exp(_41)| of them=— 1 order surface mode FIG. 14: Vertical profile 01_‘ t'he magnitude of the_incident \ivave plus space
versus 6, showing the impedance effect on the resonant positian. rlarmonlcs above a rigid grating. Z&=, a=0.1m,|=0.287m,f
=0.06 m,1=0.128 m, f=2.95 kHz, the solid line from Fig. 1p. =3.66 kHz.)

using the same parameters as in the first example. Compar@gsumed no diffraction modes in the expansion of @§).

to the rigid grating Z=xc), the resonant position is shifted Insteaq, the phase velocity of the surface wave in each ex-

to smaller angles of incidence with the introduction of an@MPple is directly calculated from the valuesaj andk that

inductive reactance. correspond to the resonant position of the surface mode.
Them= —1 order resonant modé _, discussed above,

combined with all other nonresonant surface modes, results. Locating the resonance of a surface mode in the

in a net backscattering surface wajgnce a;<0 as seen k—a plane and its dispersion curve for  ka=1

from Eq. (25)]. A net forward-scattering surface wave domi- . .

nated by, for example, thei=1 order surface mode, can For a given gratinga andl), the resonance of surface

also be generated with homogeneous plane-wave incidenc@.o.des depends_on both the frequency an_d the angle of the

The third example to be considered is the case in Sec. IV Bmudence. Locating the palf, £) correspond_m_g to the reso-

where two diffraction modes, i.e., the reflection wave and thehan_c_e of themth-order mode can be nontrivial b.ecause -the

m=—1 order diffraction mode, exist and the conditi¢s0) pqsmons of the c_omplex poles/zeros after analytical continu-

holds. By choosing appropriate and |, tuning 6, we can ation of the amplituded,,, are unknowr(except for.the_zeros

excite resonance behavior of the=1 6rder mode. For in- Of Bm)- However, the banded structure shown in Fig. 7 for

stance, lei\/a=0.93 andl/a=2.87; by adjusting the angle

of incidence, we find the resonant position for the mdde 25 ' ' C—— m=-2
at 6=7° (see Fig. 14 The figure shows the vertical profile |~ m:";
of the total field of the first 28 surface mod@gs=1-14 and ‘ —e- m=+2
—2——15) plus the incident wave. The reason why we in- 2r } - E:‘g
cluded the incidence wavinit amplitude in the compari- § —— m=-5
son of vertical profiles instead of the reflection wave, as Weg ¥ m=+4
did for Figs. 9 and 11, is that the latter is now no longer 2 1.5}

constant as angle of incidence varies and is therefore nog t
suitable as a reference. The amplitude variation of each mod&
with angle of incidence is plotted in Fig. 15. The=1 order
surface mode becomes pronounced asé@sapproaches
sin(7°), while the amplitudes of other surface modes remaing !
small. This results in a net forward-scattering surface wave™
over the grating. A similar procedure can be applied for tun- i
ing other resonant surface modes.

It is of interest to observe thkl values for these three
examples. They arkl=2.227 for the first example, 1.38
for the second, and 6.%7for the third, which fall within the Angle of incidence, & (deg)
third, the_second’ and the sixth passbands, ,reSpe(,:tlvely' Hovl\fTG. 15. The amplitudeBD ,, exp(B,l)| of the first eight space harmonics,
ever, their phase velocities cannot be obtained directly fronghowing them=1 order surface modéorward scatteredbecomes reso-
the curves in Fig. 7, because in obtaining the curves we@ance a®=7°. (Z=«, a=0.1m,|=0.287 m,f=23.66 kHz.)

litudes o
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FIG. 16. The resonant positidrib _, exp(B_,l) is truncated at pof the

m=—1 order surface mode in thd—|a_,|I plane. FIG. 17. The dispersion curve for tlme= —1 order resonant surface mode
obtained from a top view of the amplitude surface in Fig. 16 but with a
refined mesh.

surface-wave dispersion can be consulted in determining the

possible existence region of the resonance of a high-ordgherefore, actually constitutes the dispersion curve of this
surface mode. By scanning both frequency and angle in thgrface mode. Figure 17 shows the dispersion curve thus
passband regions in Fig. 7, and observing the maxima ofyrmed by simply taking a top view of the amplitude surface

surface mode amplitudes, we can locate the resonant posj Fig. 16 but with a refined mesh. The dispersion relations

tions or the values off, 6) numerically. Additional con-  for m=1 order and other higher-order surface modes can be
straints may apply to the possible existence region of resqsptained in the same way.

nance, such as the inequality E@5) or Eq. (50), under
which certain diffraction modes exist as well. In the follow-

ing, instead of the paiff, #) we consider alternatively a Vil. CONCLUDING REMARKS

dimensionless pairk(,|a,|l) by using the variable trans- An exact analytical solution has been obtained for the
formsk=2xf/c anda,=k sin 6+2mm/a, and attempt to lo- plane-wave scattering by a comb-like, impedance grating.
cate the resonant positions in tke-|a || plane. The predictions for the Brewster-angle anomaly for a rigid

Again, consider then=—1 order surface mode in the grating are consistent with a solutf@nobtained using a
second example of the preceding subsection, i.e., the rigictheromorphic analysis. The advantages of this approach over
grating case witha=0.06 m andl=0.08 m. We limit our modal model and meromorphic analysis methods are that the
searching scope within the second passband of Fig. 7 withoefficients of the Bloch—Floquet expansion of the scattered
| 4|1 >kl (since the surface wave velocity is lower than thefield, either above the grating or inside the slots of the grat-
sound speed in free airFurther limits are|ay|l=|2#l/a  ing, are explicitly specified by the tangent velocity difference
—kl sin6|>|2m1/a—KI| and 2rrl/a>|a_4|l sinced=0. Then, across a partition wall, and the resulting system of linear
we select a scanning region &fle[1.327,1.46r] and  equations is numerically stable. Therefore, if it is possible to
|a_4|l €[4.5,7.6, which corresponds to fe[2800 measure the tangent velocity difference across a partition
Hz,3100 HZ and # [ 10°,65°], respectively. Within this re- wall experimentally, then one can directly calculate all the
gion, the amplitude responsig ; exp(B_4l)| of the m mode amplitudegdiffraction and surface modgwith these
= —1 order surface mode is calculated at discrete values aéxplicit expressions without solving the integral equation.
(kl,]a_4|l) and is plotted as a function of the two variables Furthermore, based on these explicit expressions, many
in Fig. 16 in a 3D format. For the large values|af_ ;|| (>6,  properties of the scattering process, such as the asymptotic
for the geometry, a detailed numerical search with very fine behavior of the expansions and the poles of the diffraction
mesh for the amplitude was conducted. The search revealeamplitudes, are easier to access. The drawback is it is only
that the amplitude increased to very large values but varieduitable for comb-like gratings.
continuously with the occasional extremely large peak. For  The equivalence of the impedance grating to a flat im-
display purposes, we have truncated the amplitude gbedance surface has been demonstrated at low frequencies,
|P _, exp(B_11)|=6 in the figure with reduced mesh density. where only the specular reflection wave exists in the scat-
From Fig. 16, one is able to find not only the resonant positered far fields. To achieve the field-independent or locally
tion in terms of(f, ) and the order of magnitude of the reacting equivalent surface impedance, it is necessary that
surface modébearing in mind that the incident wave ampli- |/a>1 and\/a>1. The acoustic leakage through the parti-
tude has unit amplitudebut also the dispersion relation of tion walls of a grating contributes to the nonlocal reaction of
it. Note that each surface mode has to obey its own dispetthe equivalent impedance.
sion relation in order to become resonant and to propagate Simple, approximate formulas provide a relatively accu-
along the grating surface; the locus of the resonant positionsate estimation of the dispersion relation in the low fre-
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quency range of the base passband. An inductive componeEqs. (18) and (A2), the residues can be calculated, and the
in the leakage impedance can reduce the dispersion of suresults are
face waves in the high-frequency range of the same band. iBu
The numerical results at low frequencies also show that ho- Res{ F1(x,8) ]
mogeneous plane-wave incidence cannot excite effective sur- B
face waves on perfect gratings. At high frequencisave-
lengths are comparable to the grating pe)jdids possible tp ' - *m elamX+iBmu (A3)
generate surface waves of large amplitude over a grating in Iaﬁm2
either the ba_ck\_/vard or forward direction V.V'th homogeneo_uqn obtaining Eq.(A3), use has been made of the following
plane-wave incidence. It should be mentioned that with N~ entities:
homogeneous incident waves or localized soufeesg, point ' _
sources, line sources, and bounded beaihss possible to  C0g (X+a) ay]— cogXay,)exp —iagg)
generate surface waves over a grating at low frequencies, _ . _. .

) . . ) =isin(a&y)expixam),
without necessarily making use of the resonance of high- N(@go) eXpliX ar)

eiﬁu
=Ref{ Fo(x,8) ]
B=Bm B B=Bm

order surface modes. Nevertheless, the study presented heyes xa,,)expia&y) —cog (Xx—a)am) (A4)
has demonstrated an interesting technique for surface-wave . . i
excitation, making use of periodic structures comparable in =i sin(ago) explixam),
size to the source wavelength. This surface mode resonangehere a,,, is given by Eq.(A2).
is the counterpart to the diffraction mode resondhtewell- Then, the integral in Eq(A1) can be rewritten as
known in grating theory. "
f [---]dp=27i > Res[-~-]—J [--1dB
APPENDIX A: THE CONTOUR INTEGRAL - Ce
Consider the following inverse Fourier transform:
_ —f [---]dﬂ—f [+1dB
1 (= g'pu C« Ck
=g | Foxe) S d, a1)
o — | [1dB. (A5)
whereF (x,w) is defined by Egs(22b) and (18). Co

When u>0, the integral will be convergent in the
Im(B)>0 half-plane. From Eqs(18) and (7), the branch
points in the integrand of EQAl) are 8= *k (the plane is
cut from —k to k), and the poles in the Ing)>0 half-plane
are found to bes=g,,, where

The second term vanishes according to the Jordan’s lemma,
while it is easy to show the third and fourth terms tend to
zero as the circle shrinks to its center. The last one, after
some manipulation, gives

=, Ka? |_t1dp=imp0, (A6)
= = 0
BO 70 ﬁm | aﬁ,‘— k2" k2< afn’ where
2mm ( _ cog(x+a)k]—cogxkye 2
with B, being either positive real or positive imaginary. The p(X) = na= a/2§xsna,
path of integration in the inverse Fourier transfoiil) can ~ cog xk)e'?é0—cog (x—a)k]
be deformed according to the contour as shown in Fig. 18. Pa(X) = codag,)— codak) .
Here, we assumey, and the real3,, in Eq. (A2) having a na<x<na+a/2
small imaginary part, which eventually tends to zero. From \ B ' (A7)
From Egs.(Al), (A3), (A5), and(A6), we have
P o an X -+iByU 1
[(X,u)=2ri m;w iaﬁzme +5P(X)|,  (A8)

wherep(x) is defined by Eqs(A7).

Whenu<0, the integral in Eq(A1) will be convergent
in the Im(B)<0 half-plane. Using the similar procedure as
above but with the poleg= — B,, located in the Img)<0
half-plane, we obtain

_ ; c m iaXx—iBmu 1
= m m .
I(x,u) 2 m;_w : ﬁqe + 5 p(x)
(A9)
FIG. 18. The contour integral path. Combining Egqs(A8) and (A9), we have

2010 J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002 Zhu et al.: Impedance grating scattering and surface waves



o

L(X,u)=27i sgr(u){ O—

e« iagy

where sgn() is the signum function.

. . 1
el apX+iBmlul 4 E p(X)

(A10)

Finally, from Eqgs.(Al), (A10) and after some algebra, the four inverse Fourier forms in(£8).become

o]
>

m< = ia s,

|
?‘f(x,z>=fof(t>

SC

;=

=—»

with p(x) being defined by EqgA7).

APPENDIX B: PROOF OF EQ. (27)

Let
- am
2 el amX
m= e (= Bh)
2w
§0+ m—
eiléom(2m/a)]x

2\ ? )
§0+m? _k

” 27
= > gm—). (BD)
m=—oo
where
(§O+u) i
~ —_ 29 77 Ai(éptu)x
g(u) (go_l_u)z_kz 0 " (BZ)
From the Poisson’s summation formdfawe have
- _[2mm -

where g is the inverse Fourier transform @f and can be
expressed as

1 (= _
g(t)=zﬁw§(u)e"”du

_ 1 = (&t
27 ) _o(Eptu)P—K?

e‘§0‘f°° s
2w )8t —K?

ei(§0+ u)x—+itu du

eiS(X+t) ds.

(B4)

finds

i —iépt

9()=—

e+t sgrix+t). (B5)
Substituting Eq(B5) into (B3) results in(note:|x|<a/2)
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emmx“BmZ[(—2i>sin<ﬂmt>]]dt, 2=,

| ” . . . 1
¢?§(x,2)=fof(t)[m2 iaamz el “m sgn(z—t)e'Pmlz =t — g Am(z+ 1]+ 5[sgnz—t)=1]p(x) dt, Os=zs=l,
m

©

=a >, g(ma)

m=—o

_a > e iomagikixtmal gy ma)
m=—ow
ial| . - Lo
= —{ k¥ sgr(x) + E [e—lfomaelk(ma+x)
2 m=1

_ eigomaeik(ma—x)]]

— %[eik|x| Sgr(X)+eikX

1
1—eak—&) 1

_efikx

1
1_gakigg 1

_ E ik|x|
=3 [e sgr(x)

_sin(kx—aé&g) — e sin(kx)
! coqak)—cogaéy) ]
ia
=5 P(X), (B6)
wherep(x) is given by Eq(A7). Finally, from Eqs(B6) and
(B1), Eq.(27) is proved.
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Acoustic scattering by inhomogeneous spheres
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Acoustic scattering problems are considered when the material pararfuetesityp and speed of

soundc) are spherically symmetric functions of position. Explicit separated solutions are dépived
whenp(r)=exp(3r) andc™? is a linear function of %, and(ii) whenp(r)=exp(r? andc™ 2

is a linear function ofr2. In both cases, the radial parts of the solutions are given in terms of
Coulomb wave functions or Whittaker functions; these are well-studied special functions, closely
related to confluent hypergeometric functions. Two problems are discussed in detail: scattering by
an inhomogeneous sphere embedded in a homogeneous fluid, and scattering by a homogeneous
sphere with a concentric inhomogeneous coating. 2@2 Acoustical Society of America.

[DOI: 10.1121/1.1470502

PACS numbers: 43.20.HANN]

I. INTRODUCTION Second, we could have situations in which—n(r)]

o ) . doesnot have compact support, but is such thét) —1 as
Sound propagation in inhomogeneous media continues_, .. The corresponding scattering problems are uncom-
to be of interest. Much is known about layered, stratified,on, in acoustics.

media, where the properties of the meditensity p and Third, we could havea(r)=1 outsideD with n discon-
speed of sound) depend on one coordina®,say, Where, in,0us acrossiD, the boundary oD. The corresponding
y, and z are Cartesian coordinate®rekhovskikh, 1960 scattering problem will require transmission conditions
Such situations have obvious application to underwatefqross the interfaceD. If the material inD is actually ho-

acoustics. _ _ mogeneous, so that(r)=n,, a constant, for allreD,
~ For time-harmonic motions of frequenay the govern- 1, ndary integral equations ové can be used:; see Klein-
Ing equation Is man and Martin1988 for a review.

pdiv(p~tgradp)+k?p=0, (1) In this paper, we are mainly concerned with this third
class of problem: acoustic scattering by a bounded inhomo-
geneity embedded in an unbounded homogeneous medium.
We begin(Sec. I) with a derivation of the partial differential
V2p+kan(r)p=0, (2)  equation(1): this equation governs the acoustic pressure in
an otherwise stationary but inhomogeneous compressible
fluid. We give this derivation because some textbook discus-
sions are flawed. We then suppose that the inhomogeneity is
spherically symmetricso thatp and ¢ are assumed to be

. . . . given functions of the spherical polar coordinatéonly).
. There is a considerable I|teratqre on E), espgmal!y Such problems have been studied by several authors. For
in the context of quantum mechanics; some of this will be .\ <" ¢ he first typdsmoothn with n(r)=1 for r
mentioned below. In addition, several point-source solutionga] Ahner (1977 has given low-frequency expansions. For
(Green'’s functionsare known for various functional forms ’ :

) . . the second typgsmooth n, with n(r)—21 rapidly asr
of n(r); see Lietal. (1990 for a review. — ], Colton (1978 has used so-called “transformation op-

. For scattering F’mb'ems n aCOUSt'C_S" ther_e are esser?e’rators,” which map solutions of the Helmholtz equation
tially three cases, depending on propertiesnofirst, sup-

pose that[1—n(r)] has compact support, so that(r) (V2+Kk2)u=0 3)
=1 for r=|r|>a, say. Suppose further tha(r) is smooth 0 ’

for all r in three-dimensional space. Then, one can reduce thl‘?lto solutions of Eq(2); see also Colton and Kre$t978.
scattering problem to an integral equation ogrthe finite  coiton and Kres§1979 have extended this approach to con-
region in which n(r)#1. One such is the Lippmann— giger related transmission problems; see also Sleeman

Schwinger equatiorisee, for example, Ahner, 1977; Colton (190 Frisk and DeSant61970 have exploited the notion
and Kress, 1992, Sec. 8.2; and Newton, 1982, Sec.).10.3

: ; : ) of a Jost function from quantum mechanics so as to obtain
Asymptotic approximations are available fgja<<1 (Ahner,

R - approximate solutions of Eq2).
1977, Kriegsmanret al, 1983; Kriegsmannet al. (1983 We consider acoustic scattering by an inhomogeneous
also discuss Eq) briefly.

sphere of a radiua. The medium inr >a is homogeneous,
with densityp, and sound speed},. For time-harmonic mo-
dElectronic mail: pamartin@mines.edu tions, the acoustic pressupg is governed by Eq(3). Inside

wherek= w/c andp is the acoustic pressure. If the density is
constant, Eq(1) reduces to

whereV?=div grad, n(r)=[co/c(r)]? is the(square of the

refractive indexat positionr, ko= w/cy, andcg is a constant
sound speed. We assume thét) —1 asr—oc in all direc-

tions; this excludes layered media, of course.
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the spherer<a, the governing equation is E{l). Across DS
r=a, we impose continuity of pressure and normal velocity, Dt =0. (7)
the latter condition being equivalent to continuity of -
p~(oplar). This gives aransmission problemif the inte-  Here,p is the densityp is the velocity,P is the pressure, and
rior is homogeneous, witlh=p,; and c=c; constants, the S is the entropy per unit mass; all these quantities may de-
problem can be solved exactly, by separation of variablegpend onr andt. They will be related to the quantities in Eq.
We will show that this method can be extended to certain4) later. The material derivative is defined by f(Dt)(r,t)
functional forms forp(r) andc(r). We also consider scat- =df/ot+(v-V)f. In writing Eq. (6), we have assumed that
tering by a sphere with a homogeneous core and an inhomaehere are no body forces. Equatitéf) means that the flow is
geneous coating. isentropic(Batchelor, 1967, p. 156

There are many papers on analogous electromagnetic We also require an equation of state. As usual, we sup-
scattering problems. For an early treatment, see the paper Ippse that
Wyatt (1962. One popular technique is to replace the inho- P=P33 8
mogeneous sphere by many concentric layers, and then to (p,S). ®)
use a simple approximation to the refractive index withinlt follows that grad3 [ gradf)+hgradS where

h layer for example, Perel . Kai and M
o1 (1954 have repored the resuts of computadons wih as (P19 = (PPIR)S and RS =(dP1dS);
many as 10000 layers. The temperatureT satisfies [Batchelor, 1967, Eq.
In this paper, we consider the following specific func- (3.6.6]
tional forms B DT -DP
(i) p(r)=per and[k(r)]z—k2+ar*1, Por =T o
(i) p(r)=pse#" and[k(r)]2=Ki+ar? wherev is the ratio of the specific heat at constant pressure

2 _ to the coefficient of thermal expansion. Thus
Here,p,, B, ki, anda are adjustable parameters. For both

(i) and (i), explicit solutions of Eq.(1) are derived. The ~ DT VEZ D_F__ 22 VT ©
radial parts of these solutions are given in terms of known Dt p Dt ve davu,
special functions, namely Coulomb wave functions and _.

. . : . ._.using Eqgs(5), (7), and(8).
Whittaker functions. These solutions then permit the explicit I%orqlin(ez)ir(a)coustif:s) we suppose e P+ P. T
solution of various scattering problems for inhomogeneous < PPOS 0T, U

spheres. Such solutions can serve as benchmarks for numen-?0 " V1:_ P=potp1, S=StS;, T=To+Ty, T=co
cal methods, but they also have intrinsic interest. +cy, andh=ho+h;, where the ambient flow is denoted by
the subscript 0 and the small acoustic disturbance is denoted

by the subscript 1(The quantities of most interest aRy ,
v, Po, S, andcy.) We require that the ambient flow sat-
Il. GOVERNING EQUATIONS isfies Eqs(5)—(9) exactly, and then we derive a set of linear

equations governing the small acoustic disturbance.
In the linear theory of acoustics for an inhomogeneous E Eq.(8 btainP. — P dth
medium, the basic equation {Morse and Ingard, 1986, p. rom Eq.(8), we obtainPy=P(po,Sp) and then
408) P.=c5p1+hoS;, (10)

p div(p~LgradP)=c~2(#2P/dt?), 4)  wherec2=T2(p,,Sy) andhy=h(po,Sy).
. . . ) The leading-order equations, governing the ambient
whereP(r,t) is the acoustic pressure at positioand timet, flow, follow from Egs.(5)—(7) and (9)

p(r) is the density, and(r) is the speed of sound. For time-

harmonic motions, wittP=Re{pe™'“"}, we obtain Eq/(1). 9pPo _
According to Piercdlggg, Eq. (51) was first given by gt TAVlpovo) =0, (D
Bergmann(1946. However, thederivation of Eq. (4) does
not seem to be well known. In particular, Eg) cannot be p [—0+(vo-V)v0] = —gradP,
derived without mentioning the entropy.

=—cagradpo—hogradS,, (12
A. Derivation of Bergmann’s equation

So
The exact equations for the motion of an inviscid com- WJrvo-gradSO—O, 13
pressible fluid are(Batchelor, 1967, Sec. 3.6; Ostashev, Ty
1997’ Sec. 21)1 ot +(vo V)To— - VCOTO d|VUO (14)
Dp . . L
p+p divo=0, (5) Having selected an ambient flow, the acoustic distur-
Dt bance is then governed by
_Dv apq
P— Dt +gradP 0, (6) 7+dlv(p1vo+ pov1) =0, (15
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dv, deduced thaw, cannot be constant in an inhomogeneous
—i Two V)vat(v1-V)uo fluid. In fact, if the right-hand side of Eq22) does not
depend ort, we can integrate, thus showing tHat| must

Po

v _ grow linearly witht. This is an unpleasant consequence of
i WHDO'V)UO] =~ gradpy, (16) neglecting entropy.

s The derivation given by Morse and Ingafd986, p.
2+v0-grad81+v1-gradsozo. (17) 408) is fle}wed. They begirtheir first displayed equation on
at p. 408 with
We could derive an equation fdr; , but it will not be needed Dpo  dpo
below. 0= H=7+v0-gradpo (23
1. Homogeneous fluid at rest (in our notation, which is incorrect; cf. Eq(11). Next, they

This is the textbook casgighthill, 1978; Pierce, 1989; “add a sound wave, with its velocity, its pressure, and its
DeSanto, 1992 where the ambient flow has,=0, with ~ additional density changé,” so thatu=v,;, p=P;, and
Po, po. So, To, Co, andhy all constant. These choices sat- 6=p1 in our notation. The following equations are erroneous
isfy Egs.(11)—(14) identically. Then, Eqs(15—(17) reduce  because, in their Eq23), they haveu in place ofv,, so that

to their u is bothvy anduv,!
dp1 .
ot TPo dive,=0, 18 3 zero ambient velocity
gv, Suppose, instead, that=0. Then, Eqs(11), (13), and
PO = —gradP, (19 (149 imply that pg, Sy, Tg, Co, andhy do not depend onh
Equation(12) will also be satisfied, provided that
ﬁa_stl o, (20) c5 gradpy+ hg gradS,=0. (24)

_ o ) This constraint permits us to have spatial variationsjiand
together with Eq(10). Multiplying Eq. (18) by cg and Eq. po Within a stationary fluid.

results, gives
P %P1 | div(powy) =0 25
—=+pochdive, =0, (21) ot ceeT
J
Then, eliminatingy; between this equation and Ed.9), we poﬂ +gradP,=0, (26)
obtain the familiar wave equatio?P;=c, %(#?P4/dt?), at
for the acoustic pressure. The other acoustic quantities, S,
p1, andS;, can then be calculated in terms ®f. i Tv19radS,=0. (27

In practice, the dependence on entropy is often ignored, _
so that Eq.(8) is replaced byP=P(p) whenh=0 and$S, Mak|ng use of Eq(10), we combine Eqs(25) and (27) to
=0. However, we claim that entropy should be retainedd/Vé

when the fluid is not homogeneous. aP,
— +c3div(pov4) + hovy - gradS,=0. (28
2. Constant entropy Using the constraint24) so as to eliminat&, from Eq.(28),

Suppose tha§, is constant, so that E413) is satisfied e obtain Eq.(21) again (except nowp, and c3 are not

identically. Equation(12) reduces to required to be constantsFinally, by eliminatingy ; between
v Egs. (26) and (21), we obtain Bergmann's equatiof),
7+(v0'V)vo=—c§pglgradpo. (220 whereinp=p,, P=P; andc=c,.

If we assume thab, is a constant vector, Eq&2) and(11) .
imply thatp, is constant. Equatio(L2) then implies thaP, ~ B- Reduced equations

is a function oft only. But, Po=P(po,Sp), so thatP is also We can reduce Bergmann’s equation to an equation
a constant. Thus, constafi§ and constanb, imply thatp,  without first derivatives by introducing a new dependent
andPg are constant too. Alsdl, must satisfy Eq(14) with  variable(Bergmann, 1946 thus, define
zero on the right-hand side. T

Further remarks on the assumption of consgin the P=p=U, (29)
context of stratified media can be found in the book by OstawhenceU is found to satisfy
shev(1997, Sec. 2.2}4 N

DeSanto(1992, Appendix 1 A argued that the second VAU+KU=c %(5°U/at?), (30
term on the left-hand side of E2) is negligible, and then where
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K=3p~'V?p—3p~?|gradp|? (3D
- _ p1/2v2(p—1/2)_ (32)

Equations(29)—(31) [but not Eq.(32)] can be found in Bre-
hovskikh (1960, p. 171

Evidently, Eq.(30) can be reduced to a partial differen-
tial equation with constant coefficients if, for example,
V2(p Y)=xp Y2 and c=c,, where\ andc; are con-
stants.

For time-harmonic problems, we can writéJ
=Re{ue '“"Y andv=Re{we '“'}, whenceu satisfies

V2u+(k*+K)u=0, (33

wherek?= w?/c?, and then the fluid velocity is given by
=(iwp) *grad(p ).

In a homogeneous region, we haye p,, c=c4, and
k=k;=w/cq, all constants. ThenK=0 and Eq.(33) re-
duces to the standard Helmholtz equatiom i constant but
c is not, we still haveK=0 and then Eq(33) is usually
written as Eq(2); see, for example, Colton and Kred$992,
Chap. 8.

Finally, we can write Eq(33) as V2u+ (ki—V)u=0,
wherek? is a constant anf =kZ—k?—K, which we recog-
nize asSchralinger’s equationwith potential V [Newton,
1982, Eq.(10.59].

Ill. SPHERICAL SYMMETRY

Introduce spherical polar coordinates,d, and ¢. As-
sume that the inhomogeneous medium is spherically sy
metric. Then, asV{f(r)}=r"2[r%']" [where f'(r)
=df/dr], we find that

K(r)=r"Y(p"lp)+3(p"lp)—3(p'lp)>.

Next, we seek solutions of EG33) in the form

u(r,6,¢)=un(r)Yn(6,4), (34)

wheren is an integery,, is a spherical harmonic, ang,(r)
is to be found by substituting E¢34) in Eq. (33). [A typical
spherical harmonic i&\"'P'(cos)e™’, whereP is an as-
sociated Legendre function am])' is a normalization con-
stant]

We have

V2(u,Y,)=u,V2Y,+2(gradu,) - (gradY,) + Y,Vu,.

(39

But (gradu,) - (gradY,) =0 because, is a function ofr and
Y, is a function of# and ¢. We also know that"Y, is a
separated solution of Laplace’s equation, so that

0=V3r"Y }=r"V2Y, +Y,V3{rm,
by Eg. (35 and V#{r"}=n(n+1)r""2? whence V?Y,=
—n(n+1)r2Y,, and then Eq(35) gives

V2(u,Y,) ={V2u,—n(n+1)r 2u,lY,.
Hence, Eq(33) reduces to

ur+2r tul +[k3(r)+K(r)—n(n+1)r~?Ju,=0, (36)

which is a linear second-order differential equation for

the method of separation of variables for various scattering
problems involving inhomogeneous spheres. Two such prob-
lems are described next.

IV. TWO SCATTERING PROBLEMS

Acoustic scattering by spheres, with various boundary
conditions, is a textbook topidMorse and Ingard, 1986, Sec.
8.2). We shall modify the familiar method of separation of
variables so as to treat inhomogeneous spheres.

Consider an inhomogeneous sphere of radigentered
at the origin. Without loss of generality, we can take the
incident pressure field as

)

p‘—"‘;zeikozz > (2n+1)i" 1 (kor ) Py(cos6),

pOCO n=0
where j,(w) is a spherical Bessel function. Then, we can
write the total pressure field outside the sphere,zia, as

©

Polr,0)=poc 2, (2n+1)i™jn(kor)

+Ashn(kor )} Pn(cosd), (37)

where hn(w)Ehgl)(w) is a spherical Hankel function and
the dimensionless coefficients, are to be found. This ex-
pression forp, satisfies the Helmholtz equation and, more-
over, po— Pinc Satisfies the Sommerfield radiation condition
at infinity.

m"i" An inhomogeneous sphere

Inside the spherera), we write

u(r,0)=pg%c2>, (2n+1)i"Bun(r)Py(cosh), (38)
n=0
where the dimensionless coefficieds are to be found and
uy(r) is a solution of Eq(36) that is regular at =0; some
explicit solutions will be given later.

We find A,, andB,, by enforcing the transmission condi-

tions across the interface e a. Let

pa= lim p(r) and xy= lim [p"(r)/p(r)],

r—a— r—a—

so thatp, is the surface value of the interior density. Then,
the interface conditions are

apO —1/
Gr =Pa

Ju

_ 172 -1
Po=pa U and pg o

(39

+ KaU)
onr=a. Substituting Eqs(37) and(38), making use of the
orthogonality of the Legendre polynomials, gives
jn(koa)+Aphp(koa)=0oBuun(a),
ko{in(koa) +Anhp(kea)} =0~ 'Bp{up(a) + kaun(a)}

for n=0,1,2,..., wherer=(p,/po)*>. These two equations
can be solved foA, andB,

ApA=(koo)~ lj n(koa){ur;(a) + Kaun(a)} — 0] ﬁ(koa)un(a)

andB,A=i(kea) "2, where

u,(r). If we have solutions of this equation, we can then used =ohi(ke@)un(@) — (koo) "*hp(kea){up(@) + raun(a)}.
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B. A homogeneous sphere with an inhomogeneous which is theCoulomb wave equatiofAbramowitz and Ste-
coating gun, 1965, Chap. 14lts general solution is

Suppose that the spherela consists of a homogeneous Wh(X)=AF(7,X)+BpGr(7,X),
core r<b (with density p. and sound speed.) with an
inhomogeneous concentric coatinpyr<a.

In the coating, we can write

where A, and B,, are arbitrary constants;,, is the regular
Coulomb wave functior(bounded ax=0), andG, is the
irregular Coulomb wave function. These functions arise in

” nuclear physicgBiedenharn and Brussard, 1965, Chap. 3,
U(r.0)=p’c3S, (2n+1) Soc. g P
= .4
" Unsurprisingly, Coulomb wave functions are wavelike,
XM Bpun(r)+Crun(r)}Pn(coso), in the sense that
whereu,(r) andv,(r) are solutions of Eq(36). We suppose Gh(7,X)+iFo(7,X)~€e'*"¢) a5 x—o0,

thatu,(r) is regular atr =0, whereas ,(r) is singular atr

=0. In the homogeneous core, the pressure field is wherep= 7 l0g 2+ n7—oy anda, is known[Abramowitz

and Stegun, 1965, E@14.6.5]. Moreover,

o

Po(r,0)=poCh 2, (2n+1)i"Dpjn(ker)Pp(cosh), Fn(0X)=x]n(x) and Gn(0x)==xyn(X),
n=o wherej, andy, are spherical Bessel functions, so that the
wherek.= w/c;. known solutions for homogeneous media are recovered.

We have to enforce two transmission conditionsr at
=a and two atr =b. Let

po=lim p(r) and xy= lim [p’(r)/p(r)]. B. Case Il (ki=p?)

r—b+ r—b+ Chooses=8(a+ B), and then Eq(42) becomes
Th he interf iti
en, the interface conditions are Hg9) and W0 + [~ n(n+ 1)x~Z]wy(x) =0, 3
d au
P.=piu and pc‘l%:pg”z - U which is related to Bessel's equation; the general solution of

Eq.(43) is
Win(X) = VX{Andan s 1(VX) + B Yans1(VX)}.

onr=h. These four conditions can be used to determiipe
B,, C,, andD,, in a straightforward way.

V. EXPONENTIAL VARIATIONS IN p

Let us assume specific functional forms far) and  C. Case Il (ki<pB?)

k(r)=w/[c(r)], namely Chooses?=4(B%—k3) and setk=2(a+B)/5 and u
p(r)=p.€*" and[k(r)]?=k2+2ar 1. (400  =n+3. Then, Eq.(42) becomes
Here,p,, B, k?, anda are four adjustable constants. We find Wh(X)+[— 3+ kX1 (5= w?)x 2w,y (x) =0, (44

that Eq.(36) becomes S . . .
a-(36 which is known adNhittaker's equationlts general solution

ur+2rtul +[k3— B2+ 2(a+ B)r t is given by
—n(n+ 1)r72]un:0. (41) Wn(X):AnMK,,LL(X)+ BnWK,/,L(X)’

Equation(41) has a regular singularity at=0, an irregular whereM, , and W, , are Whittaker functions; these are
singularity atr =, and no others. Therefore, it can be trans-discussed by Whittaker and Wats¢h927, Chap. 16 by
formed into the confluent hypergeometric equation. Make thé&rddyi et al. (1953, Sec. 6.9 by Abramowitz and Stegun
substitution (1965, Chap. 18 and by Buchhol21969. The occurrence
u(N=r"lw.(x) with x=ar of Whittaker functions is a little surprising, because these
n n functions do not exhibit wavelike behavior. Thus

in Eq. (41), giving

2_ p2

Ki= B + E a+ﬂ_n(n+1) w,(x)=0, (42 asx—oo. Moreover[Buchholz, 1969, Sec. 2, Eqdl1g and
5° X & X2 n ’ (293]

whered is a parameter at our disposal. There are now three 1 - (x)=\/x1 ,(x) and W, ,(X) = VX 7K ,(X),
cases, depending on the relative sizekand 82. * g * .

x/2 x/2

M, . (X)~Xx""e and W, ,(x)~x"“e”

wp(X) +

wherelﬂ andK , are modified Bessel functions. We remark

o
A. Case | (ki>pB?) that Whittaker functions also occur when solving the steady-
Choosed?=k3— g2 and sety= —(a+ )/ 8. Then, Eq.  State heat-conduction equation, [di¢r)gradu]=0, when

r) varies exponentially with; see Martin . The so-
(42) becomes k(r) Il U Martin(2002. Th
, . . lutions described above can be inserted into the formulas
Wi(X)+[1=27x""—n(n+1)X"“Jwy(x) =0, obtained by the method of separation of variables in Sec. IV.
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VI. GAUSSIAN SPHERES

One drawback of the functional forms in E40) is that
the corresponding sound speed satisti€3)=0 (unlessa
=0), so that Eq(40) may not be suitable for an inhomoge-
neous sphere(This objection does not apply if the sphere
has a homogeneous core, as described in Sec.)IV B.

As an alternative, we can make progress by supposin§

that the density is a Gaussian and tk&r) is linear inr?.
Thus, we suppose that

p(r)=pse#" and [k(r)2=K3+ 2, (45)

wherep,, B, kf, andvy are adjustable constants. We find that

Eq. (36) becomes
un+2rtul +[(y— BHr2+(ki—38)—n(n+1)r 2Ju,=0.

To simplify this equation, make the substitutiam,(r)
=r 3w, (x) with x=6r2, wheres is a disposable param-
eter. This gives
3
i

v | Y B KI38
Wi (X) + T"‘W— n(n+1 16 Wn(X)

=0. (46)

As in Sec. V, there are now three cases, depending on t
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An experimental and theoretical investigation has been made of the influence of high-frequency
acoustic waves on the flow of a liquid through a porous material. The experiments have been
performed on Berea sandstone cores. Two acoustic horns were used with frequencies of 20 and 40
kHz, and with maximum power output of 2 and 0.7 kW, respectively. Also, a temperature
measurement of the flowing liquid inside the core was made. A high external pressure was applied
in order to avoid cavitation. The acoustic waves were found to produce a significant effect on the
pressure gradient at constant liquid flow rate through the core samples. During the application of
acoustic waves the pressure gradient inside the core decreases. This effect turned out to be due to
the decrease of the liquid viscosity caused by an increase in liquid temperature as a result of the
acoustic energy dissipation inside the porous material. Also, a theoretical model has been developed
to calculate the dissipation effect on the viscosity and on the pressure gradient. The model
predictions are in reasonable agreement with the experimental data00® Acoustical Society of
America. [DOI: 10.1121/1.1466872

PACS numbers: 43.20.Jr, 43.25.NDEC]

I. INTRODUCTION oped a model based on a peristaltic liquid transport caused

by a deformation of the pore walls due to the traveling
Fouling of the near-well bore region can decrease the oihcoustic waves.

recovery from an oil reservoir dramatically. Different tech- However, no certainty exists as to which mechanism is

niques have been developed to remove this fouling; for inthe correct one. We focus our investigation on Berea sand-

stance, the injection of acids that dissolve the fouling parstone with permeability 100 to 300 mD and on acoustic fre-

ticles. These techniques have undesirable side effects: theyiencies below the critical frequency as defined by Bide

are costly, impose production shut-off, or have a negativdhave carried out a detailed experimental and theoretical in-

impact on the environment. Therefore, in more recent years gestigation of the influence of acoustic waves on (laeni-

new cleaning method has been proposed and investigatedarn liquid flow through a porous material. The results are

treatment of the near-well bore region with high-frequency,given in this publication.

high-energy acoustic waves. However, the results of this

_technlque_ are ra_ther varlab_le. Acoustic cleaning causes a0 EXPERIMENTAL SETUP

increase in the oil flow rate in only about 50% of the cases.

In a number of cases it even has a negative effect on the flof- Cores

rate. In order to optimize this technique it is essential t0  The cores that are used for the experiments are cylindri-

understand  the physical mechanism of acoustiGa|ly shaped Berea sandstone samples. They are very repre-

cleaning. sentative for the type of porous material in an oil reservoir.
In this publication we go back even one step further. Werhe |ength of the cores is 20 cm and the diameter 7.62 cm.

first try to understand the influence of high-frequency acousThe porosity is about 25%. The initial permeability is 100—
tic waves on the flow of a liquid in a porous material without 300 mD for all samples.

fouling. Only when we have understood this influence will
we take the next step: to understand the effect of acoustic
waves on fouling particles present in the liquid in the porousB'
material. In the review article by Beresnev and Johrison, A core is placed in a rubber sleeve to keep it fixed dur-
several mechanisms have been proposed for the influence iy the experiment. It is then placed in a steel vessel in which
high-frequency acoustic waves on the flow of a liquid in adown-hole conditions are simulate@dip to 150 bar and
porous material. They mention, for instance, the reduction irt00 °Q. An acoustic horn is placed at one end of the core
adherence between pore wall and liquid, acoustic streamingsee Figs. 1 and)2

acoustic cavitation, in-pore turbulence, viscosity decrease The high pressure in the vessel makes it possible to
due to energy dissipation, etc. Aart and Odrhave devel- avoid cavitation(for pressures lower than 100 bar the influ-

Setup
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dPcore

dP1 dP2

Acoustic thermocouple
horn :| <
porous medium FIG. 1. Experimental setup with one
| temperature measurement.
pump

ence of cavitation becomes noticegbl€he space between in the hole to fix the thermocouple. The aim was to measure
the vessel and sleeve, which is filled with water, is thenthe liquid temperature in the middle part of the core during
pressurized to 180 bar to make the rubber sleeve completefiie experiments. During the first experiments we found a
sealed off. A constant flow of brin 2% KCI solution in  Very interesting effect with respect to the temperature. In
watej through the core is generated by means of a pump. s@rder to investigate this eff<_ect in more detail, we insta_lled
because of mass conservation, the local superficial velocitg:/o thermocouples at the side wall of the porous medium,
in the core is constant. We use brine instead of plain water t rough the rubber sleevsee Fig. 2 This new temperature

avoid colloidally induced migration of fines. A flow in both measurement method is better than the first one, as the
' probes do not disturb the flow field. Results with both mea-

dwzctrl]ons N pO.SS'bIe' This a"OV\.'S us t(;] have ths, I|qu.|d ﬂow,surement methods will be reported in this publication. Cal-
andt ,e aCQUSt',C wave propagating in the same direction or Ip|ations show that the temperature profile is uniform within
opposite directions. There are four pressure measurementse core. Also, the temperature in front of the core can be
two along the cordat 2.54 and 10.70 ¢jmand two at both  measured. The data are sent to a digital data recorder and
ends of the corésee Figs. 1 and)2dP; is the pressure drop processed on a computer.

over the first part of the core samptP, the pressure drop
over the middle part, andP, the total pressure drop over the

C. Ultrasonic equipment
core. The pressure drop over the third paittP§) can be quip

calculated in the following waydP;=dP.— (dP,+dP,). The ultrasonic equipment consists of
For the first experiments a thermocouple was placed in thg)  a converter, which converts electricity into mechani-
middle part of the core, approximately 10 cm deep, from the cal vibrations of a piezoelectric element;
side wall. A hole was drilled in the core and the thermo-(ii)  an amplifier, which is used to set the amplitude of the
couple placed insidésee Fig. 1 Liquefied metal was poured vibrations; and
dPcore
dpl dpP2
Acoustic
horn ]
porous medium FIG. 2. Experimental setup with two
I temperature measurements.

)

thermocouples

pump
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(i)  an ultrasonic horn, which concentrates the mechanicdll. EXPERIMENTAL PROCEDURE AND RESULTS
V|brat|qns onto the front _S|de of the core sample. Two, Experimental procedure
acoustic horns are applied: a Branson module PGA
220 (a 20-kHz horn with maximum power output of A new core is used for each new series of experiments.
2000 W and a Branson module PGA 478 40-kHz  Before performing experiments, the following steps are
horn with maximum power output of 700 WThe  taken.
power output can be selected as a percentage of the ) ) .
Maximum. (1) The core is flushed with CQto expel all the air in the
porous material. The gas flow is kept on for several
minutes.
D. Microphone (i)  After the gas flow is stopped a constant flow rate of
A microphone is placed at the end side of the core. It is the brine is started: the high pressure ensures that all

used to measure the amplitude of the acoustic signal after ~ the CQ, dissolves into the brine.
passage through the core. In this way the damping of th€ii) The three pressure drops, the temperature in the
signal was determined during the experiments. middle part of the cor¢or at the sidewall of the coye

240

230

220

permeability (mD)
—_ - ey N N
~ @® © o -
(=] o o o o

-
[o2]
o

150

140
0

FIG. 4. Permeability as a function of
time calculated assuming a constant
temperature.
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FIG. 5. Permeability as a function of
time calculated using the measured
temperature.
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and in front of the core, and the constant flow rate ofpart is accurate, as there is no influence of end effects of the
the brine are recorded. core. For this reason we will leave out of consideration in
(iv)  The flow rate is increased up to the maximum valuethis paper results for the pressure gradied®,/dx and
that the pump can deliver to detach and remove posyp, /dx over the end parts. It can clearly be seen in Fig. 3
sible fines that are present in the core sample. that during application of acoustic power the pressure gradi-
ent over the middle part of the core decreases. During this
experiment théconstank liquid flow and the acoustic wave
As an example of our experimental results, we show inpropagation were in opposite directions. The flow rate was
Fig. 3 the pressure drop over the middle part of the corezs mi/min.
dP,/dx as a function of time during one of the experiments: From the measured flow velocity and pressure gradient
x is the distance to the front end of the core. _as a function of time we have calculated, neglecting the in-
Also, the applied acoustic power is given as a funcnonﬂuence of the temperature change on the liquid viscosity, the

of time. In this experiment the acoustic frequency is 20 kHz, iy . .
which is significar?tly lower than the critical?/almégo KH2. permeability of the porous material in the middle part of the

The measurement of the pressure gradient over the middle

B. Experimental results

©w

50%
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70%
80%
90%
100%

DX+ D>%0O

FIG. 6. Output signal as a function of
core length. Symbols refer to the per-
centage of maximum power output.
Conditions: T=20°C, Ppore
=120 bar,pcon= 185 bar.
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TABLE |. Parameters used for the calculation shown in Figs. 8 and 9.  gtion we used cores of different lengtts 11, and 16 cm
and measured the damping as a function of the core length

Parameter value with the aid of the microphone. Since we were not able to
Qfast 8.3 mill move the microphonét is embedded in the plunger at the
ﬁﬁ;ﬁsity of incident wave 1%27”;\/\/ end of the corg the void spacdin the case of the shorter
Permeability 200 mD cores had to be filled in with a substitute material. We used
Porosity 25% Peek (a plastig. It can be assumed that the losses in the

filing material are small compared to the losses in the po-
rous material itself. We show an example of our experiments
core sample as function of time by applying Darcy’s law.in Fig. 6. In this case, a brine-saturated core was used and the

This law is given by experiment was carried out at room temperature. For each
core length, six different power inputs were used. As ex-
dp M ; .
—=—"y, (1) pected, each set of points could be interpolated by means of
dx K an exponential curve. The averaged damping coefficient was

. . . . o calculated to be 8.3 it.
in which K is the permeabilityu the superficial liquid vis-

cosity, anQU the liquid velocity. As mentioned, t_hg_viscosity V. THEORETICAL CALCULATION
was considered constant and computed at the initial tempera- _ _ .
ture (30 °C), measured in the core before the experiment. In ~ We will now calculate the influence of high-frequency
Fig. 4 the calculated permeability for the middle part isacoustic waves on the flow in a porous medium, and in par-
shown as a function of time. It seems as if the high-ticular pay attention to the influence of the heat generation
frequency acoustic waves cause a significant increase of tifiile to the dissipation of the acoustic waves on the flow. We
(effective) permeability. first calculate the temperature distribution in the core as a
However, the liquid temperature has an influence on théunction of time, taking into account the acoustic energy dis-
liquid viscosity. Therefore, we repeated the calculation of theSipation and the convective heat transport due to the liquid
permeability of the middle part of the core, but this time flow. We assume that the solid and the fluid are in thermal
taking the(known) influence of the temperatuteneasured in ~ €quilibrium: there is no heat transfer either from liquid to
the middle part of the cojeon the viscosity into account. Solid, or vice versa. To check this hypothesis we made use of
The result is shown in Fig. 5, which represents the saméhe method proposed by KaviahyVe may assume that the
experiment as in Fig. 4. The relationship between tempera{.adial temperature distribution is uniform, because the rubber
ture and viscosity that we used can be found in the form of gleeve is a good insulating material. So, we consider the
table in Zaytsev and AseyévAs can be seen, there is no temperature to be a function of the axial coordinate only. The
longer an influence of the high-frequency acoustic waves offPllowing heat balance equation is then satisfied:

the permeability. The permeability remains nearly constant. oT oT pras
The pressure drop decrease observed during the applicatippCp, td+(1— ¢)psCp ] T +piCp v X Koz + Siean
of acoustic waves is solely due to the decrease of the liquid @

viscosity, caused by the temperature increase of the liquid as

a result of the acoustic energy dissipation in the porous mah which T is temperaturec,,  andc,, s are the specific heat
terial. This holds for all our experiments; both for the casefor liquid and solid, respectively; andps are the liquid and
where the acoustic wave propagation and liquid flow are irfolid density, respectively, and the superficial velocity of
opposite directions and when they are in the same directioihe liquid. ¢ is porosity.« is the effective diffusion coeffi-

In the following, we will compare this result with theoretical cient: for simplicity it is taken equal to the average of the
predictions. values for the fluid and solid. In EG2) we did not include a

term representing the heat transfer from the core sample via

the side wall and the rubber sleeve to the water in the sur-

rounding vessel. However, the heat conductivity of the rub-
Before we can make theoretical predictions concerninger sleeve is very small and the heat loss to the water is

the influence of acoustic wave propagation on the liquid flow(according to our calculatiortherefore negligible compared

through a porous material, we must know the damping of theo the convective heat transfer. Only when the convective

wave inside the material. The incident acoustic wave is spliheat transfer is absent €0) will the heat transfer through

in the porous medium into a slow wave and a fast wave. Thehe side wall become important. The source term in @y.

damping of the slow wave is very fast and is known. How-may be written

ever, the damping of the fast wave is much more difficult to _ _

predict. Biot's theory predicts a damping coefficient for the Shea= 2atast fast, &+ 2atsioud sow 2. (3)

fast wave which is too low for many porous materials. To thel 5 o and|l g, o @re the initial valuesat the front end of the

best of our knowledge, no models are available that can presore of the intensities of the fast wave and slow wave that

dict a damping coefficient for the fast wave which is in are transmitted in the porous material as a result of the inci-

agreement with the experimental measurements. This is whgent acoustic wave at the front end of the core. There is no

we decided to determine this damping coefficient for ourtransmitted shear wave, as the incident acoustic wave is per-

core samples experimentally. In order to measure the attenypendicular to the porous material surface at the front end.

IV. DAMPING COEFFICIENT
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The damping coefficients for the fast wave and the slowtions. For the 700-W experiments, we measured the damping
wave are given by and agy - coefficient as described earlier. The values used are given in
To calculate the intensity of the fast and the slow wavesTable I.
from the intensity of the incident wave, we applied the pro-  With the parameter values from the table, we can solve
cedure proposed by Wet al® using the Poynting vector for the heat balance equation. In this way the temperature is
elastic waves in porous media. By definition the absolutecalculated as function of time for a certain experiment. The
value of the Poynting vector is the intensity of the wave. predictions compare reasonably well with the measured tem-
As mentioned, it is well-known that the damping coef- perature as a function of time. Two examples are given in
ficient of the fast wave is considerably larger than the valud-igs. 7 and 8. Now, assuming that the permeability is con-
calculated using Biot's theoryTherefore, we used experi- stant and taking into account the temperature dependence of
mental values. For the experiments with the 2-kW horn, wehe viscosity, we can calculate the pressure drop over the
used values available in the literatui€elder) because our middle part of the core using Darcy’s law. The result of this
microphone did not function properly for such a strong sig-calculation for the experiment with the temperature change
nal. Kelder measured experimentally the damping coefficienshown in Fig. 8 is given in Fig. 9. As can be seen from this
for the fast wave for Berea sandstone under different condifigure, the experimental results and theoretical predictions
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FIG. 9. Comparison between the mea-
sured pressure gradiercontinuous
line) and the calculated valuédash-
point line), using the setup in Fig. 2.
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are in reasonable agreement. This confirms again that thetrated that, beyond the effect of heating up the fluid and
pressure drop decrease measured during the application thfereby changing its viscosity, there is nothing unusual.
acoustic waves is due to the viscosity decrease caused by the

heating of the liquid as a result of the acoustic energy dissiACKNOWLEDGMENTS

pation. We wish to acknowledge Professor Dr. Ir. M. E. H. van
Dongen and Dr. Ir. D. M. J. Smeulders for the fruitful dis-
VI. CONCLUSION cussions and suggestions throughout this work.
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Real-time nondestructive evaluation of fiber composite
laminates using low-frequency Lamb waves
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Amid the nondestructive evaluation techniques available for the inspection of composite materials,
only a few are suitable for implementation while the component is in service. The investigation
examines the application of Lamb waves at low-frequency—thickness products for the detection of
delaminations in thick composite laminates. Surface-mounted piezoelectric devices were excited
with a tone burst to generate elastic waves in the structure. Experiments were carried out on
composite beam specimens where wave propagation distances over 2 m were achieved and
artificially induced delaminations as small as 1?owere successfully identified. The feasibility of
employing piezoelectric devices for the development of smart structures, where a small and
lightweight transducer system design is required, has been demonstrated. The resonance spectrum
method, which is based on the study of spectra obtained by forced mechanical resonance of samples
using sine-sweep excitation, has been proposed as a technique for measuyg_tmab mode

phase velocity. The finite-element method was also used to investigate qualitatively the dynamic
response of laminates to wave propagation. Several locations and spatial distribution of the actuators
were examined showing the advantages of using transducers arrays for the inspection of large
structures. ©2002 Acoustical Society of AmericdDOI: 10.1121/1.1466870

PACS numbers: 43.20.Ks, 43.35.Zc, 43.35.Yb, 43.60.RAR]

I. INTRODUCTION distances, allowing the material between transmitter and re-
ceiver to be interrogatetiHence, a line scan is achieved
The ability to evaluate the integrity of a structure with- with each pulse rather than the comparatively slower point-
out removing its individual components has become an imscanning performance of conventional ultrasonic technique.
portant technology challenge. Several nondestructive evallFundamentally, this method involves the analysis of the
ation (NDE) methods exist and are used in compositetransmitted and/or reflected wave after interacting with the
structures, where visual inspection, radiography, ultrasonicsest part at boundaries or discontinuities. The presence of
shearography, and thermography are among the most cordamage is identified when the response signal of subsequent
monly used. Despite their wide use and improvement in theests deviates from the reference response of the undamaged
last decades, the majority of NDE methods is not suitable fogonfiguration taken earlier in the structure’s life.
implementation into a smart structure. Applications that re- | amb waves can be excited and detected by a variety of
quire a probe to obtain data and scanning of large areas arfethods, such as the use of interdigital transdu@erss),>>
disregarded as the basis for the development of selfine point contact transducets,air-coupled ultrasonic
diagnostic systems, since they need direct intervention q_fransducergi|aser-generation methoaand the W|de|y em-
humans to perform the inspection. In principle, an in-servicep|0yed angled Perspex wed§elowever, among these meth-
health monitoring system would imitate a biological system,ods only the use of IDTs appears suitable for implementation
where attached or built-in sensors Continuously interrogatﬁ] smart-structures app”cationsl where a small and ||ght-
the structural integrity throughout the component's life.\yejght, permanently attached transducer system design is re-
Therefore, techniques that can operate from fixed Iocationauired, Still, IDTs present some limitations for the Lamb
in the structure while inspecting large areas are prime candiyaye inspection of thick sections that are commonly em-
dates for the development of a structural integrity monitoringp|oyed in practical structures. When used in ultrasonic appli-
system(SIMS). Furthermore, by fixing the transducer, many cations, piezoelectric materials are normally operated at its
variables affecting the reliability and repeatability of mea-thickness-mode dss) resonance frequency, which is deter-
surements are removed allowing the precise assessment Rfined by the thickness of the element and the longitudinal
minute changes in structural behavior, which permit the earlyyave velocity in the material. The thickness of piezoelectric
detection of damage occurrence. elements of practical use varies from few microns to few
An attractive technique for the development of a SIMS ijlimeters; thus, the dynamic range of piezoelectric trans-
is the use of Lamb waves. Their application has long beeqycers extends from low MHE0.5) for thick elements to a
acknowledged as a potential solution for large-area nondegy hundred MHz for very thin films. Since Lamb wave
structive inspection, as they are able to travel relatively long/elocity depends on both the excitation frequency and thick-
ness of the plate combined in a frequency—thickndsg (
dElectronic mail: ¢.soutis@ic.ac.uk product, then the lower operational frequency of a transducer
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imposes an upper limit on the thickness of the plate in which
a Lamb wave can be excited below the cutidif product of M

high-order Lamb modes. This condition is important in the by = L =629 mm

use of Lamb waves for NDE applications, since the excita- Actuator D albiminction

tion of a single Lamb mode favors signal interpretation. One ¢ Sensac ey /
example is frequencies less than 250 and 100 kHz, respec a = 300 mm w=25 mm
tively, would be necessary in order to have only the funda-

mental Lamb mode€A, andS,) propagating in typical com- FIG. 1. Experimental setup of the composite beam specimen.

posite aerospace laminates, which have thickness ranging

from 6 to 15 mn? Likewise, if a 12-mm-thick steel plate is resonators(Maplin Electronics Ltd, used as actuator and

to be tested, this implies working at frequencies below 13Gensor, respectively, and bonded near the beam end, as

kHz.’ shown in Fig. 1. A thin layer of cyanoacrylatBostik super-
This work investigates the generation of Lamb wavesglug) was uniformly applied to the brass back and pressed

for the NDE of composite laminates using surface-mountedirmly against the beam surface; the excess glue was re-

piezoelectric elements of narrow strip shape, operated in themoved with an absorbent cloth or tissue. Minimal surface

longitudinal mode @3;). When voltage is applied to a preparation(dry and cleahwas needed to ensure good ad-

bonded piezoelectric patch, it expands and contracts parallékesion. National InstrumentsABviEw® signal-processing

to the surface, inducing a bending moment in the structure. I§oftware and an analog-to-digital caf@®CI-MIO-16E-1

the voltage applied is a sinusoid of few cycles, it then genwere used in conjunction with a personal compui@ell

erates a transient flexural wave whose transmission, prop@ptiPLex Gxa, Pentium Il 300to implement the data

gation, and subsequent reflections at the specimen’s boungransmission/acquisition under an automated framework and

aries can be analyzed and used to identify the size anth perform the sensor response analyses. The actuator was

location of damage. The advantage of using the longitudinaéxcited with a 10-V software-generated signal. Both sensor

or radial modegrelated to width and length, or diamet@f  and actuator were connected directly to the data acquisition

the piezoelectric element rather than the thickness mode isard.

that the former can be excited at much lower frequencies,

which allows the inspection of thicker laminates while keep- .

ing the fh product low, thus generating only fundamental B- Phase velocity measurement

Lamb modes. The wave velocity is the fundamental characteristic of a
The study first examines the dynamic response of amb wave, since wave propagation may be analyzed by the

narrow-beam specimens to sine-sweep excitation and enyariation of its velocity as a function of théh product for

ploys the resonance spectrum method to perform wave vVesach Lamb mode, as shown in Fig. 2. These relatiois

locity measurement$® The dispersion curves obtained con- persion curves are found by numerical solution of the

firm the effective generation of Lamb waves and provide thERaerigh—Lamb relation for wave propagation in isotropic

information needed to locate and characterize damage Oblates, described comprehensively by ViktotdWhey can

composite beam specimens. Then, the finite-element methagso be determined experimentally using the amplitude spec-

takes the investigation one step further, from beams to plategum method® and the phase spectrum metH8d.

and is used to predict wave generation and propagation in  An alternative procedure to perform phase velocity mea-

wide laminates. surements in the lovih product range is the resonance spec-

trum method, which is based on the mechanical resonance

Il EXPERIMENTAL PROCEDURE AND response of beam specimens. In a narrow beam of ldngth

MEASUREMENTS the p;\rticle velocity at resonance consists of a series 'of
. _ . standing waves whose frequency correspond to the condition
A. Materials and instrumentation that an integral number of half-wavelengths fits in the

Tests were performed on narrow-beam specimens mad@@Mmple. Thus, resonance exists whén=An, wheren is the
of aluminum and composite material. The beams were suplarmonic integer and is the wavelength. Since the phase
ported on a cushioning platforrtStyrofoam to simulate  Vvelocity is given by
free—free boundary conditions. The composite beam was ob-

tained from a 24-plylayer sequencg,*45°/0°/90°5) car- 10

bon fiber/epoxy laminate of size 68G70 mm. The lami- 'E‘E g A

nate was fabricated using T300-924C prepreg tdpexcel =2 S

Composites Individual test specimens 6225 mm and 2.7 2z 6 ’

mm thick were cut from the laminate using a diamond-wheel % 44 A,

saw. The elastic properties of the unidirectional ply were ; 5 ]

Ell: 162 GPa,E22: 11 GPa,V12: 034, Glzz 5.7 GPa., and é

densityp=1536 Kg/n?.!! The dimensions of the aluminum 0 . . “1 )

specimen were 82416 mm and 3.3 mm thick. The beams
were instrumented with two piezoelectric patches, 20
X5 mm, made of commercial brass-backed piezoceramic FIG. 2. Lamb wave phase velocity dispersion curves for aluminum.

Frequency-thickness (MHz-mm)
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FIG. 3. Resonance spectrum of the response of the aluminum beam ©G. 5. Phase velocity in a 2.7-mm-thifk: 45°
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sine-sweep excitation.

measured using the mechanical resonance method. Lamb theory estimates
are also presented.

Cp=AT, (1)
then thenth mechanical resonance frequency can be exglumingm obtaineq using the resonance frequency values
pressed as from Fig. 3, substituted in Eq.2). Also, the beam theory
results derived using Eq&) and(3) are presented in Fig. 4
nc, 2mnc, along with the Lamb theory curve for aluminum, showing
fa=% OF @n= oL (2 excellent correlation with the experimental results.

2L
) ) ) The phase velocity of thé, Lamb mode in the com-
Equation(2) gives, at discrete values of frequendy), the  qjte specimen was also measured using the resonance

information necessary to determine the variation of phasgyecyrym method. The sine signal used to excite the actuator
velocity as a function of frequency. In this fashion, the dis-, .o swept from 0.1 to 25 kHz in 0.2 s, and the structural

persion curve for thé\, Lamb mode in aluminum was 0b- yo5n0nse was sampled at a rate of 0.5 MHz. Figure 5 shows

tained from the resonance spectrum of the aluminum beamyq exnerimental curve for the laminated beam along with
The actuator was excited with a 10-V sine sweep sighal, the | amb theory curve calculated using the average elastic
varying from 0.1 to 50 kHz in 0.2 s. The structural reSponseproperties of the orthotropic platé.

captured with the sensor was sampled at a rate of 0.8 MHz "o experimental data shown in Fig. 5 have the charac-
and was then Fourier transformed to obtain the resonancgistic of the dispersion curve of the, Lamb mode, al-

. . . . 0 )
freqL_Jen_mes shown in Fig. 3. The well-defined peaks ShOW'?hough the agreement between Lamb theory and experimen-
in this figure correspond to the flexqral modes of the beamy,| rasults is not quite as good as for the isotropic case,
whereas the smaller peaks appearing above 20 kHz cormggpacially as theth product increasesdecreasing wave-

spond to axial modes. Below 1 kHz, the resonance maximgyngiy The difference can be attributed to the fact that trans-
were only poorly excited so that the modal number of each o se shear deformation effects, which are neglected in the
peak could not be indexed reliably. Therefore, the appropriz,mjation of the classical plate theory, are significant in the

ate value oin was estimated by comparison with theoretical ;g6 of [aminated plates due to the relatively low transverse
values of the natural frequencies of a uniform beam in transgpoor modulud®
verse flexural vibration, using the expressfon It can be seen from Fig. 4 that Lamb wave and beam
)\iz El theory can be used to successfully predict the dispersion
iTo 2 \/%; 1=12,.., 3 curves of an isotropic material. However, for composite
laminates there are no obvious analytical solutions, and nu-
wherem is the mass per unit length of the bealhjjs the  merical techniques are required to model such systems. In
modulus of elasticity] is the second moment of area, and  this study, we have proposed the resonance spectrum method
is the solution of the characteristic equation for the imposedis a reliable procedure for measuring low-frequency, long-
boundary conditionsfree—freg. wavelength flexural wave phase velocity. In addition, the re-
Figure 4 shows the dispersion curve for thgmode in  sults demonstrate that surface-mounted piezoelectric ele-
ments can effectively be used to generate Lamb waves in

1.2 composite laminates. In the following section, this wave gen-
Eog | 4 erat_ion me_thodology will be employed for the NDE of com-
4 ) posite laminates.

506 -
kS & Beam Theory C. Delamination detection
% 0.3 + Experimental . . .
£ Lamb theory Due to the relatively low interlaminar strength of com-
of : Y , posite laminates, damage in the form of delaminations can be
0 25 50 75 100 easily introduced from low-velocity impacts during service,
Frequency-thickness (kHz mm) with the subsequent degradation of the mechanical properties

FIG. 4. Phase velocity in a 3.3-mm-thick aluminum beam measured usin of the laminate that can lead to the premature failure of struc-

the mechanical resonance method. Beam and Lamb wave theory estimat%‘_éral components. In pra_ctlce, composite |am|nates_ are de-
are also presented. signed to tolerate a certain degree of damage and it is often
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2 001
only necessary to find relatively large defects such as 10—20- "é-
mm-diameter delaminatiortS.For instance, the typical size <
-60.0 T

of a critical defect in a composite structure for a Harrier
aircraft is approximately 20—25 mfh. 0.00 0.80 1.60
In order to study the ability of Lamb waves for delami-

nation detection at lovih products, the composite beam was - 60.0 ©
examined at different damage scenarios. The beam specimen E

was excited with short sinusoidal pulses rather than with ;.;

continuous wave excitation, as was previously done for E 0.0 1

phase velocity measurements. The undamaged beam was 'E-

tested and its response history was captured and kept as base- <

line. Then, a sharp and thin scalpel blade was inserted into -60.0 '

the beam’s midplane, 300 mm from the left end, as shown in 0.00 0.80 1.60
Fig. 1. The blade was forced into the material, initially pro-

ducing a small delamination whose dimension was increased 600 @)
each time the blade was forced into the midplane. In this E

manner the delamination area was gradually extended from a bre

small incision located at one edge of the beam until it ER

reached almost a full-width delamination. This type of arti- ’%

ficially induced delamination is thought to better represent < 0.0

damage patterns observed in fatigue loading than beams with
a full-width delamination of fixed length, as is commonly 0.00 Time (ms) 1.60
found in the literature. The damage arég, was measured

at every stage by conventional ultrasonic c-scan, as shown FIG. 7. Measured response of the composite beam at different stages of
Fig. 6. damage: (8) no defects; (b) Ag=22mn?; (c) Ag=47mn?; (d) Ay

Figure 7a) shows the response of the undamaged com=2%0 mnf.

posite beam when the actuator was excited with a 15-kHz
sinusoidal pulse of 5.5 cycles modulated by a Hanning winis affected(reducedl due to the presence of damage. These
dow. The response history shows the input pulse followed bffects can be better appreciated in Fig. 8, which represents
another large wavelet, which is the first reflection from thethe arithmetic difference between Figay and each one of
opposite end of the beam. The time difference between thEigs. 1a)—(d), respectively.
transmitted and reflected signals corresponds to the propaga- In Fig. 8 the reflection associated with the delamination
tion distance of the wave, which is twice the length of the(indicated by an arroyvand that of the end of the beam can
beam. The second and third reflection were also identifiethe clearly identified. The increasing amplitude of the latter
using longer acquisition times, suggesting a propagatioan be explained in part due to the differences in amplitudes
range well over 2 m. However, the response signals shown ihetween Fig. #® and Figs. T)—(d). However, it is mainly
Fig. 7 were limited to capture the first reflection. It can alsodue to a shift in the time it takes for the input pulse to
be observed that the shape of the wave changes as it propeemplete a round trip along the length of the specimen in the
gates along the beam due to the dispersive nature oAthe presence of damage. In general, the wave velocity changes in
mode at thisfh product. the delamination area since the wave has to travel through
The same test was performed after damage had bedwo regions(above and below the delaminatjoof smaller
induced, thus monitoring the specimen response at differerthickness than the undamaged laminate. In consequence, the
stages of delamination growth. In comparison to Fip),7 fh product decreases and the phase velocity of the wave
Figs. 1b)—(d) show an extra reflection between the inputreduces according to the dispersion curves of the material
pulse and the first reflection from the end of the laminate. I{Fig. 5. Therefore, the time of travel of ah, Lamb wave
can also be observed that the amplitude of the first reflectiopropagating in a specimen with delaminations is greater than
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— ~42 mm. From the c-scans shown in Fig. 6, trdimension
E (@) (parallel to the length of the beam specimefthe smallest
_§ delamination tested was 10 mm, showing that even though
g 00 the delamination size is only25% of the wavelength, the
g system is capable of detecting it.
<
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laminate, shown in Fig. 7, can be used to estimate the loca-
tion of the defect along the beam span. The time difference
(At ) between the maximum peak of the input pulse, and the
maximum peak of the reflected signal from the end of the
beam is about 106Qus, which corresponds to twice the
length of the specimen (2=1258 mm). Similarly, the time
difference Aty,m) between the maximum peak of the input
pulse and the maximum peak of the reflected signal from the
damage site is about 49@s, which corresponds to a round
trip of the wave between the receiver and the delamination
(2a). Substituting these values in E@)

LAtgam
a= TAT (4)

the location of damagea] is found to be at 290 mm, which

is a fair estimate of the actual locatioa= 300 mm) of the
artificially induced delamination shown in Fig. 1. This mea-
surement is only approximate, since the shape of the wave
packet does not remain the same during its propagation along
the beam due to the dispersive nature of AgeLamb mode

at thisfh product.

These experiments demonstrate the potential use of
Lamb waves at very lowh products for NDE applications,
which along with simple and effective signal processing can
be used for the development of an in-service, health moni-
toring technique capable of detecting delaminations in com-

FIG. 8. The arithmetic difference between the response of the undamagéaos'te components. However, the specimens used were es-

specimen and the response at different stages of darf@ige defects|b)
Ayg=22 mn?; (c) Ag=47 mn?; (d) Ag=220 mnt.

sentially narrow-beam elements where lateral wave-
spreading effects are minimized. In the following section the
wave propagation on wide plates is studied using HiBe?
finite-element softwaré’ Different actuation configurations

that of a wave traveling in an undamaged specimen. were examined including the use of a linear array of actua-

The utility of subtracting the response histories, as intors for the damage evaluation of large surfaces.
Fig. 8, is that the large-amplitude sections of the signals are

eliminated, thus revealing small changes in the propagating|. FINITE-ELEMENT ANALYSIS
wave such as variations in the amplitude and phase shiftsA W ion in ol
This procedure can be easily implemented in a health moni-~ ave propagation in plates
toring system, where damage occurrence would be identified The finite-element analysis was carried out in parallel
by the appearance of ripples or wavelets in an otherwisavith the experimental approach to study Lamb wave genera-
straight-line signalFig. 8@a)] representative of the undam- tion and propagation in quasi-isotropic beams and plates.
aged structure. Preliminary models were used to investigate qualitatively the
The sensitivity of the propagating wave to even theinteraction of the elastic wave at boundaries in order to pre-
smallest delamination can be explained in terms of the reladict the response of a surface-bonded sensor. A mesh in the
tive dimension between wavelength and defect size. Tha—y plane was implemented to model the laminate using
wavelength of the excitation signal can be calculated fronguadrilateral shell elements, where the nodes are defined on
Eq. (1). The pulse center frequency used was 15 kHz, withthe mid-thickness of the shell and each node has both trans-
plate thickness of 2.7 mm, which gives a frequency—lational and rotational degrees of freedom. Bheoordinate
thickness product of 40.5 kHzmm. At thith value the was aligned along the length direction and theoordinate
phase velocity of thé, mode obtained from Fig. 5 is close normal to the surface of the plate. The plate thickness is
to 640 m/s, from which the wavelength is found to e given as a geometrical parameter when the mesh is gener-
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FIG. 9. The predicted response of 2-mm-thick laminates to a sinusoidal load E
applied at the locations indicated by bold lines on each m@sieft end of =
the beam;(b) point B; (c) point C; (d) linear distribution along the AB g
boundary. < T
0.0 0.5 1.0
ated. The excitation of the plate using piezoelectric patches % ©
was modeled with uniformly distributed moments of oppo- 2
site sign applied along two short, parallel nodal litastua- e
tor width), separated by a distance equivalent to the length of '%
the piezoelectric actuator, as indicated with bold lines in Fig. 3
9. The excitation signal employed in all of the simulations 2
was a 5.5-cycle, 20-kHz sinusoidal wave modulated by a 5
Hanning window. It was defined in the code as a time history
0.0 Time (ms) 1.0

variation of the amplitude of the applied load. Then an ex-
plicit central difference scheme was employed iNMMRCH  FiG. 10. The predicted displacement history of a node located at the center
module of theFe77, which carried out a step-by-step time- of the AB boundary. The plate was excited with a sinusoidal load applied at
marching integration to solve the wave propagation Simu|ad?ﬁe_rent_ locations(a) bottom left corner{b) center left edge; antt) linear
tion. distribution along the AB edge.

Figure 9 illustrates the predicted response of the speci-
mens at a certain time step after being excited by the deabove: actuator at the bottom left corner, point B; actuator at
scribed load case. Figuré& shows the propagation of the the center left edge, point C; and linearly distributed actua-
A, Lamb mode along a 1000 mxB80 mm beam. Likewise, tors along the left edge, AB boundary. It can be seen from
Figs. 9b) and (c) show the propagation of th&, mode Figs. 1da) and(b) that the single-actuator scheme produces
across the surface of a 500200-mm plate excited with a signal histories that do not favor signal interpretation, since
single actuator located at its bottom left corfgoint B) and  the input pulse and first reflection are not clearly defined.
at the center left edggpoint C), respectively. In contrast to Instead, Fig. 1) presents two well-defined sinusoids and a
the wave propagation in the narrow beam, the plates presefairly flat signal between them, similar to that observed for
radial wave propagation with respect to the actuator locatiorthe narrow-beam element, Fig(ay.
This lateral wave spreading generates reflections at all of the
plate boundaries, making it difficult to interpret the signal of
the surface mounted sensor. Figufe)3hows the response
of the same plate excited with a linear array of actuators The advantages of using a linear array of actuators for
distributed along its left edgéAB boundary. This arrange- the inspection of large areas are better exploited if the trans-
ment produces a fairly uniform wavefront across the width ofducers are used in a pitch—catch mddend—receive thus
the plate, which is reflected by the right edge with minoremploying the dual capabilities of piezoelectric materials as
lateral wave spreading. Such response favors the interpreteeceiver and transmitter. This approach has been examined
tion of the signal produced by a bonded sensor, since thasing a uniformly distributed sinusoidal load applied along
input pulse and subsequent reflections are similar to thosthe left edge of the plate model, the AB boundary in Fig. 11,
observed in the narrow beam and can be easily identified ivhile monitoring the in-plane nodal displacement along that
the signal time history. same edge. Both undamaged and damaged configurations

The advantages of using a linear array of actuators tevere simulated and their response compared to identify the
produce a uniform wavefront can also be appreciated in Figeffects of damage on the model behavior. Damage was simu-
10, where the in-plane displacement history of a single nodéted by degrading the material properties of a selected num-
located at the center of the left edge is shown. The displaceser of elements within the mesh. This reduction of the me-
ment histories shown correspond, respectively, to the platehanical properties varied from zero stiffness to 50% of the
response to each of the actuator distributions describedlastic properties of the undamaged material, thus represent-

B. Damage detection
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FIG. 11. Sketch of the finite-element model used in the calculations show- (1)8 10
ing a central area with reduced material properties. 1.0
0.0E+00
30804 1.0E-03
ing the cases of an open hole and damage due to low Amplitude (linear scale) Time (s) Plate width (cm)

velocity impact, respectively. Also, two different sizes of

damage were studied, a square area ok10mm and a FIG. 13. The predicted in-plane displacement history_ of the nodes located
rectangle of 26 10 mm. located at the center of the plate asalong the AB boundary of the damaged megh.Time history for the 10-

. . . ' . . ~ ' 77X 10-mm open-hole caséh) arithmetic difference between undamaged and
illustrated in Fig. 11. The dimensions of the damage sites argamaged response histories.

comparable to the wavelength £30 mm) of the propagat-

Ing pglse. and 14b) is in direct relation with the damage size; further
Figure 12 shows the response of the undamaged plalg,,gy is needed to establish an explicit relationship. These

presented in a 3D plot of amplitude of in-plane displacementggits strongly suggest that damage could be found in large-

time, and plate width. Similar to the experimental results, they o4 specimens using a permanently bonded linear array of

first part of the response shows the input pulse followed byyie;gelectric sensor/actuator elements. This concept is cur-
another large wavelet, which is the first reflection from therently under experimental evaluation.

opposite end of the plate.
F!ggre 13a) presents the response history of the platt_alv_ CONCLUDING REMARKS
containing damage in the form of a square open-hole. This
displacement history is at first glance similar to that of the ~ The resonance spectrum method has been proposed as a
undamaged model, however, evident differences between tfiechnique for measuring low frequency, long wavelength
two time histories are revealed in Fig. (bR which repre- flexural wave phase velocity. It is based on the study of
sents the arithmetic difference between Figs. 12 ar@)13  spectra obtained by forced mechanical resonance of samples
Likewise, Fig. 14a) shows the response of the plate Using sine-sweep excitation. The procedure can be used to
with the rectangular cutout, where the effects of damage argbtain the dispersion curves of materials even when there is
clearly shown; Fig. 1) presents the difference between not enough information on its mechanical properties, or
this damage configuration and the undamaged plate. Qualvhen its heterogeneous nature requires complex numerical
tatively similar results to those shown in Figs. 13 and 14technigues to model the systems. The dispersion curves were
were obtained in the case where the elastic properties in tH&€en used in the detection and characterization of damage.
damaged area were reduced by 50%, although the amplitude The generation of Lamb waves using small and thin pi-
of the wave reflection generated at the damage site is lowetzoceramic patches has been demonstrated and employed in
than in the open-hole case. the development of an on-line, structural integrity assess-
The presence of structural discontinuities can be easily
inferred from Figs. 1&) and 14b). In addition, the location
of damage can be estimated from visual inspection of these @
figures or by correlating the position on the time scale of the 5.0
wave reflection generated at the damage site with the lami- _2;8 vad 4"
nate length, as was done in Sec. Il for the narrow beam. 0.0E+00 5.0B-04
Furthermore, the severity of damage could also be estimatec
since the amplitude of the waves appearing in Figgb)13

1.0E-03

(b)

i
20 5.0

. 0.0E+00
‘ 10 * 5.0E-04 i 0
0.0E+00 0 Amplitude (linear scale) Time (s) Plate width (cm)
5.0E-04 1.0E-03
Amplitude (linear scale) Time (s) Plate width (cm) FIG. 14. The predicted in-plane displacement history of the nodes located

along the AB boundary of the damaged me&.Time history for the 20-
FIG. 12. The predicted in-plane displacement history of the nodes locateck 10-mm open-hole caséh) arithmetic difference between undamaged and
along the AB boundary of the undamaged mesh. damaged response histories.
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ment system capable of detecting delaminations in compositelr. D. Hitchings from Imperial College and Professor P. T.
laminates. The study offers solution to some of the problem€urtis from DERA for many helpful discussions.
encountered with current Lamb wave generation techniques,

where the use of standard ultrasonic probes render them un-

suitable for the deyelopment of a punt-ln, health MONItoring 1y ;. percival and E.A. Birt, “A study of Lamb wave propagation in
system due to their considerable size and shape. The inspecearbon-fiber composites,” Insigl9(10), 728—735(1997).

tion of CFRP laminates has been performed, producingZR.S.C. Monkhouse, P.D. Wilcox, and P. Cawley, “Flexible interdigital
promising results at excitation frequencies in the low ultra- E}:gzo';::”st;g"(’%"iggfZggffézgor the development of smart structures,
sonic range £ 100 k'_"Z) Where IDTs have certain _“m'tat'(_)ns 3p.D. Wilcox, P. Cawley, and M.J.S. Lowe, “Acoustic fields from PVDF
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thick laminates. 1 Degertekin and BT, Khuri-vakub, “Hertzian contact transducers
. . . . “F.L. Degertekin and B.T. Khuri-Yakub, “Hertzian contact transducers for
Slmple and effective Slgnal processing has been em nondestructive evaluation,” J. Acoust. Soc. Ag®, 299—-308(1996.

ployed for the detec_tiqn of small chgnges in the StrUCtura|_5R. Farlow and G. Hayward, “Real-time ultrasonic techniques suitable for
response, whose minimal computanonal demand makes |timp!ementing non-contgct NDT systems employing piezoceramic com-
appropriate for real-time continuous damage monitoring. Posite transducers,” Insigt#6(12), 926-935(1994.

Also, the good sensitivity to delaminations of relatively ~C: Pierce: B. Culshaw, WR. Philp, F. Lecuyer, and R. Farlow, *Broad-
’ 9 y y band Lamb wave measurements in aluminum and carbon/glass fiber rein-

small size (1 crf), considerable propagation distan¢eser forced composite materials using non-contacting laser generation and de-
2 m), and the very low requirement of electronic hardware _tection,” Ultrasonics35, 105-114(1997).

offer a cost-effective solution for structural monitoring in ’D. Alleyne and P. Cawley, “Optimization of Lamb wave inspection tech-
niques,” Nondestr. Test. Evak5(1), 11-22(1992.

terms of |_m_plementat|on and _SUbsequent operation. . 8A. Birt, “Damage detection on carbon-fiber composites using ultrasonic
The finite-element analysis has shown the potential use Lamb waves,” Insight0(5), 335—339(1998.
of an array of transducers to achieve |arge-area scannin(js.H. Daz Valdes and C. Soutis, “Delamination detection in composite
from fixed locations. It has been demonstrated that when thelaminates from variations of their modal characteristics,” J. Sound Vib.
T -~ .7228(1), 1-9(1999.
geqmetry _Of the array is chosen so that wave propagatlon IPS H. Diaz Valde, “Structural integrity monitoring of CFRP laminates
a single direction is induced, damage can be easily detectedusing piezoelectric devices,” Ph.D. thesis, Department of Aeronautics, Im-
and located from the transducer’s array response. The Iine%rperial College, September 2000. _ S
array chosen for the case of a pIate is one example of thiSC'P' Macklnle”y, Compre;swe falIL_Jre of CFRP laminates containing pin-
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general concept. Future work will involve the optimization ,gqq.
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Experimental identification of finite cylindrical shell
vibration modes

Lionel Haumesser, Dominique Décultot, Fernand Léon, and Gérard Maze
Laboratoire d’Acoustique Ultrasonore et d’Electronique, LAUE, UMR CNRS 6068, Univelsitéavre,
Place Robert Schuman, 76610 Le Havre, France

(Received 3 July 2001; revised 5 February 2002; accepted 19 February 2002

Acoustic scattering from a finite air-filled elastic cylindrical shell, immersed in water, is
investigated. The shell is made of stainless steel and has a thickness to outer radius ratio of 17%. The
considered dimensionless frequency range extends cu&rd@<22 (k,: wave number in wateg:

outer radius Bistatic measurements are carried out to identify vibration modes related to the phase
matching of the first guided wav@,, propagating on the shell. Both transducers, the emitter and
the receiver, are positioned at the same angular distance with regard to the normal axis of the shell.
The emitter transducer is fixed at a given position. In order to identify circumferential modes of
vibration, the receiver transducer is made to rotate in the azimuthal plane, normal to the shell axis.
Results obtained are plotted in functions of dimensionless frequency and azimuthal angle. Vibration
modes along the shell’s length are identified by moving the receiver transducer parallel to the shell
axis. In this case, results are plotted in functions of dimensionless frequency and axial wave number.
The experimental investigation is corroborated by theoretical results obtained from approximate
calculations for thick finite cylindrical shellScot F. Morseet al,, J. Acoust. Soc. Am103 785—
794(1998]. The evolution of the mode position with respect to the incidence angle is discussed so
as to clarify peak patterns in backscattered resonance spectr00® Acoustical Society of
America. [DOI: 10.1121/1.1468877

PACS numbers: 43.20.Ks, 43.40.Ey, 43.40.Fz, 43.20JaM]

I. INTRODUCTION denoted here as th&,) and quasishearT() helical waves.

. . Their propagation induces, at particular frequencies, a reso-

In underwater acoustics, monostatic measurements have : ; i
. . , nant state in the shell. It is reasonable to assume that minor

been extensively used, over the past years, in far-field dete%-ama es in such objecfsracks in pipes, for instanpeould

tion of objects. In recent publicatiodg,it has been shown g ject pIpes,

. . X affect their resonant response. Hence, the knowledge of
that manmade objects differ from natural orfes., rock$in L -
. ) ) : . mode organization within resonance spectra from an undam-
their elastic properties. In fact, manufactured objects, mines . . . .
. ; . aged shell is necessary in ultrasonic nondestructive evalua-
or pipes for instance, usually present geometrical and mate- . N .
. - . n of structures, in general, and cylindrical ones in our
rial characteristics that tend to enhance the propagation g
surface waves and the phase matching. When interest is fo-~ ", . - - . .
. o . In this paper, a finite cylindrical shell is experimentally
cused on scattering from finite targets, the monostatic ap-, . A 7
X ; studied. First its backscattered resonance spectra, for inci-
proach is often used, such that surface waves radiate back I nce anales ranaing froms — — 34° to +34° (normal inci
the direction of the emitter, after propagation through the g ging 1romy

o . ) S dence to the shell axis is fixed ay=0°) are presented.
extremities(reflections from truncatioisor propagation in . L S
closed patH. Then follows an investigation of vibration modes of reso-

Scattering enhancement from helical wave propagatior?ance peaks related to the propagation of Tgewave. At

. L2 given incidence angles, vibration modes in the circumference
on finite cylindrical shells presents useful features for targe . . o
and along the length of the shell are successively identified.

classification. Wave travel paths cover the whole object, s . . .
. (%xpenmental data thus obtained are systematically compared
that propagation causes resonance phenomena proper to tt e

: oo : .10 results obtained from calculations for a finite thick shell
shell as a whole, i.e., vibration modes relative to the target's” . .
. . ) ) . using elasticity theory*

circumferential and lengthwise dimensions. These phenom-
ena depenq on the aspect angle. Thus, measuremeqts fr r.nTHE TARGET AND THE EXPERIMENTAL SETUP
successive incidence angles can be grouped together, in order
to display the angular evolution of the backscattered pres- The investigated finite cylindrical shell is made of stain-
sure. less steel of density=7900 kg m 3, with longitudinal and

A number of authors consider the aspect dependence dfansversal sound velocities of, respectivel@, =5790
finite cylindrical shells’ acoustic signaturés’ They investi- m s ! and C;=3100 m s1. Dimensional characteristics of
gate, in particular, the angular range within which resonanthe object are: the outer radis=6 mm, the radii ratio
scattering involves contributions from mainly helical propa-b/a=0.83 (b: inner radiug, and the length. =65 mm. The
gation of both whispering-gallery waves and guidedair-filled shell is closed at its extremities by rubber stoppers
waves®° These two types of waves are also known as, reand immersed in a water tarithe sound velocity in water is

spectively, quasicompressior(#he lowest order of which is C;=1470 ms?). The stoppers are conical and truncated
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. =34° <Z 1) and the receiveftransducer Rare placed at equal angular
distance with regard to the normal axis of the sheli (
- =1v,; Fig. 1). The position of the emitter transducer remains
_____________ fixed during identification procedure&) the circumferential
vibration mode is labeled with an integer to obtain its
identification, the receiver transducer is rotated in an azi-
muthal plane normal to the shell aXengle®); the distances
20"9{ between the emitter transducer and the center of the object,
and between the center of the object and the receiver trans-
ducer, are 45 and 35 cm, respectively; the vibration mode
in the shell’s length is labeled with an integer its identi-
FIG. 1. Experimental arrangements; monostatic setup: transducer 1 used figation is performed by moving the receivéransducer 2
both an emitter and a receiver; bistatic setup: transducer 1, fixed, used as garallel to the shell’'s axisz(axis); the distance between the
emitter and, transducer 2, moving around, angular posilideircumferen-  ghject’s axis and the line followed by the receiver transducer
gzlti?r;dfsff gts'f'garzc?;ﬁ/reilong thez direction (lengthwise mode identii- o 45 o and the distance between the emitter transducer and
the center of the object is 35 cm.

Transducer 1

180°... -

Transducer 2

90°

such that their elevation is equal to 4 mm and the diameter of
the basement at half elevation is equabtdrhe dimension- ll. MONOSTATIC MEASUREMENTS: ISOLATION OF
_ RESONANCES
less frequency range extends ovesl;a<22 (ki: wave
number in watex In this range, the resonant behavior of the Surface waves generated at oblique incidence follow he-
Sy and theT, waves is observable. lical paths around the cylindrical shell, in the axial direction.
The short-pulse monostatic and bistatic setups of thén a previous work considering monostatic setup, echoes
MIIR *? (method of isolation and identification of resonances associated with the propagation o wave on finite cylin-
are used to obtain experimental results presented in this palrical shells were found to be received into distinct groups.
per (Fig. 1). Transducers are broadband, with central fre-Successive echo groups were received after rising odd num-
quencyf. equal to 1.75 MHz k,a=45) and the diameter of bers of reflections at the extremities of the shell. It can be
their radiating surfaces is 38 mm. A short electric pulse isdeduced from this that, in time-domain pulse responses, echo
converted into bulk acoustic wave by the emitter transducerrrangements depend on both the radius and the length of the
The time-domain responses of the insonified shell consist oshell. In related spectra, a circumferential vibration mode
echo waveforms made up of specular reflections and elastppears consecutively through many peaks of resonance,
wave reradiations. In the present investigation, resonanceontrary to the case of an infinite shell.
spectra are obtained from the FFT of time-domain responses, Experimental and calculated spectra are shown in the
devoid of specular contributions. However, correction of thedimensionless frequency rangesk,a<22 (Fig. 3). Experi-
passbands of the transducers is not mdeig. 2). mental backscattered resonance spectra, from successive in-
The monostatic part of the MIIR consists of the isolationcidence anglegmonostatic setup are placed side by side to
of resonance frequencié$Transducer 1 is used alternately obtain Fig. 3a). FFT is performed on time-domain re-
as an emitter and a receiver to obtain the acoustic signatuponses, after the specular zone, over a duration ofy450
of the shell at given incidences. The distance between thi the theoretical approach to the problem, the approximate
transducer and the center of the object is 35 cm. Results a@lculations for finite cylindrical shell, developed by Morse
presented as resonance spectra, from which resonance fet-al,'* are used. The method combines full elasticity theory
guencies can be read. and the Kirchhoff diffraction integral; it is appropriate for
The bistatic part of the MIIR enables experimental de-thick-shell cases. The calculation of backscattered form func-
termination of vibration modes. Both the emittéransducer tion can be found in Appendix A of Ref. 1the reader is
referred to Chap. 5 of Ref. 14 for more detailBigure 2 of
Ref. 9 shows examples of form functions calculated in ac-
cordance with Ref. 11. In the present paper, two successive
FFTs of the form function are performed to obtain Fi¢h)3
specular contributions are first removed from the form func-
tion. Shell parameters given in Sec. Il are used in the com-
putations. Resonances associated with the propagation of the
Sy wave are observable between the normal incidence and
the angle given by the velocity at low frequencies of the first
longitudinal mode for platesy; from 0° to =16.39. Reso-
nance peaks of th&, wave are observable from normal
; x P A - e incidence to_ the critical angle given &y, the trgnsversal
sound velocity {; from 0° to =28.39. The refraction effect
shown by Conoiret al,'® in the case of an infinite cylinder,
FIG. 2. Transducer passbands with central frequefigy:1.75 Mhz k;a is once again observed here: resonances due to the phase
=45), matching of circumnavigating helical surface waves stand on

Linear amplitude

Dimensionless frequency k;a
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FIG. 4. Planes of modal identification of circumferential vibration moag
y1=1v,=21°. Transducer 2 rotates in an azimuthal plane normal to the
shell’s main axis, with azimuthal angée at 2° increments(a) Experimental
results; linear amplitudes are normalized with respect to the peak value at
d=166° andk,="7.7; the upper part shows the relevant backscattered reso-
nance spectrum(b) Theoretical results; linear amplitudes are normalized
! | ]. with respect to the peak value @=180° andk,a=12.2; relevant spectrum

0 0.5 1 (upper parntis extracted from Fig. ().

Dimensionless frequency (k,a)

FIG. 3. (a) Experimental andb) theoretical backscattered resonance spectra)y/. BISTATIC MEASUREMENTS: IDENTIFICATION OF
from an immersed empty finite cylindrical shelb/@=0.83 andL/a RESONANCES

=10.83), shown as a function of incidence angiefrom —34° to +34°, at
half-degree increments. Linear amplitudes are normalized with respect t&. Circumferential vibration modes
the peak value in each figure/{=0° andk,;a=12.2 in both casgs
The identification of circumferential modes of vibration

is carried out aty,=vy,=21°. The receive(transducer 2
trajectories which shift towards high frequencies for inci- rotates around the shell, in an azimuthal plane normal to the

dence angles deviating away from normal incidence. In th&"€ll @xis, the angl@ varying from 0° to 180°, at 2 inter-
als. Results are plotted in functions of the dimensionless

case of a finite cylindrical shell, several peaks of resonance%
requency and the azimuthal angle. The presentation is
in a spectrum can be assouated to the same cwcumferentlﬁ

ib de of ther 6Th ks differ by th erein termedplane of modal identificatianExperimental
vibration mode of theo wave:® These peaks differ by their spectra are shown in Fig.(@. The lower part yields the

vibration modesm along the shell's length. mode identification. At a given resonance frequency, the cir-
In the following discussion, an attempt is made to clarify cymferential vibration moden) is the number of pressure
the organization of vibration modes within resonance specippes established on the semicircumference. The upper part
tra. Sections IV A and IV B, respectively, deal with the iden- of Fig. 4(a) presents the resonance spectrum from back-
tification of vibration modes in the circumference and alongscattering with transducer 1, obtained in the same conditions
the length of the shell. as those in Fig. @). Results of calculations performed using
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TABLE I. Resonance frequencies and associated identified circumferential @ =180° @ =180°
vibration modes of th&, wave on finite cylindrical shell ay;=21°. The | |
experimental/theoretical correspondence is done for the closest frequencies.

Incidence angley;=21°

Experimental Theoretical
Mode Frequency Mode Frequency

n kia n Kia
2 7.3 2 7.1
g ;:Z ; ;:g (@ ka=110 ) ka=119 © ka=112

2 8.5 FIG. 5. lllustration of circumferential vibration mode splitting for=3,

2 8.9 from 1° increment statements, over a range of azimuthal ahdtem 0° to

3 9.4 360°. Linear amplitude is not normalize¢a,b) Experimental results at
3 10.2 3 9.9 ki,a=11.0 and 11.9, respectively; d&t=180°, transducer 2 stands between
3 10.6 3 10.3 the emitter and the shell such that no signal is recei{®@aheoretical result
3 11.0 3 10.8 atk,a=11.2.
3 11.4 3 11.2
3 11.9 3 11.7
3 12.2 3 12.2
3 12.7 scanned along its axigz @xis) by the receiveftransducer 2

4 13.2 at 0.2-mm increments, over 52 mm of the total length of the
13.5 4 13.7 shell. From the spectra corresponding zaxis positions,
j ij:g j if’lé spatial (axial) Fourier transform is performed over the
4 14.9 4 15.0 scanned length of the shell. The relevant wave numkgr (
4 15.3 4 15.5 =ma/L) is linked to the vibration moden when an integer
4 15.7 number of half wavelengths is established along the length of
° 16.5 the shell. Results are plotted as a function of dimensionless
5 13'.3 2 1;'.2 fr_equency and _vibratior_1 moq!en. _Such a presentation pro-
5 17.8 5 17.9 vides the experimental identification of[lower part of Fig.
5 18.3 5 18.3 6(a)]. The upper part of Fig. @) is the backscattered reso-
5 18.7 5 18.8 nance spectrum obtained with transducer 1; it is obtained in
5 19.1 5 19.3 the same conditions as those in Figa)3 The calculation of
5 1%5 6 203 j[he theoretical backsgattered resonance spectrum presented
20.7 6 20.7 in the upper part of Fig. ®) [and extracted from Fig.(B)]
6 21.2 6 21.2 takes into account two mode summations, in the circumfer-
6 21.6 6 217 ence and along the length of the shell. The frequency/

vibration mode presentatidfower part of Fig. b)] is ob-
tained by “cascading” modem by modem of the latter
the same parameters and similar angular reception conditiorspectrum, i.e., one line of this representation is the contribu-
are shown in Fig. @). This spectrum is an extract from Fig. tion of circumferential modes for one mode along the
3(b). Resonance frequencies and identified circumferentialength. Here, it would be more accurate to calpiane of
mode values are read from Figgagand(b) and are listed in  modal isolation This presentation is preferred to that
Table 1. On both experimental and theoretical planes otdopted in Sec. IV A, since it enables theory/experiment
modal identification, the same mode of circumferential vi-confrontation. However, because of numerical constraints in
bration is identified for several distinct peaks of resonanceshe calculations,it is obtainable from grouping three zones:
This observation is illustrated in Fig. 5, through 360°. Ex-the first covers &k;a<22 and 5<m=22, the second cov-
perimentally, moden=3 is established at, among other fre- ers 14.5k,;a<22 and 23 m=30; values of the third zone
quenciesk;a=11.0 (a), andk;a=11.9 (b). Open lobes in are arbitrarily set to zero. The small white areas visible for
the figure are due to the passage of the receiver between the=26 atk,;a=14 andk,;a=22 [Fig. 6b)] are due to the
emitter and the shellat ®=180°). The theoretical approach rectangular window effect from the FFT computation of the
confirms experimental identificatiofic); other calculated second zone. In the frequencyl/vibration mode planes, the
pressure patterns in the azimuthal plane for mode3, ob-  resonances stand on successive oblique trajectories, each cor-
tained at frequencies listed in Table I, are similar, except foresponding to one circumferential vibration mode. Hence,
their amplitude. In the next section, the identification isthe presentation enables the arrangement of resonances in the
supplemented by the determination of vibration made circumferential moden, but does not lead to the determina-
along the length of the shell. tion of this mode. The identification along the length is illus-
trated in Fig. 7, through extracts from Figgapand (b), for
m=15 and 20. Mode broadening in the experimental data is
introduced by the number of measurements realized during
The identification of vibration modes along the length of reception along the shell axis, and the “Hamming”-type fil-
the shell is carried out ag;= y,=20°. The shell is linearly ter used to minimize secondary lobes due to spatial Fourier

B. Lengthwise vibration modes
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v,=20°

Vibration mode m

Y, =20°

Vibration mode m

10 15 20
Dimensionless frequency (k;a)

FIG. 6. Planes of modal identification of lengthwise vibration mouat
v1=v,=20°. Amplitude is not normalized and increases linearly from the
white to the black zone(a) Experimental results; the upper part is the
corresponding backscattered resonance spectra. Transducer 2 scans
shell's z axis over 52 mm of the total length, at 0.2-mm incremexivs.
Theoretical results; relevant spectrummpper part is extracted from Fig.
3(b).

transform. Results from identification in Figs(ap and (b)
are summarized in Table Il. For some given madean

TABLE Il. Resonance frequencies and associated identified circumferential
and lengthwise vibration modes of tiig wave on finite cylindrical shell at
y1=20°.

Incidence angley,=20°

Experimental Theoretical
Mode Frequency Mode Frequency

m kia m n kia
8 7.3 8 2 7.1
9 7.7 9 2 7.5
10 8.1 10 2 8.0
8.5 11 2 8.5
10 9.7 10 3 9.4
11 10.2 11 3 9.9
12 10.6 12 3 10.3
13 110 13 3 10.8
14 114 14 3 11.2
15 11.9 15 3 11.7
14 13.1 14 4 12.8
15 135 15 4 13.2
16 14.0 16 4 13.7
17 14.4 17 4 141
18 14.9 18 4 14.5
19 15.3 19 4 15.0
18 16.5 18 5 16.1
19 16.9 19 5 16.5
20 17.4 20 5 17.0
21 17.8 21 5 17.4
22 18.3 22 5 17.9
23 18.7 23 5 18.3
22 19.9 22 6 19.4
23 20.3 23 6 19.9
the 24 20.7 24 6 20.3
25 21.2 25 6 20.7
26 21.6 26 6 21.2
. 27 6 21.7

In Table I, significant resonance peaks are theoretically

average frequency shift equal to 0.4 is observed betweefentified by their vibration modesn(m). Among them,
theoretical and experimental values. This difference may b?nany have the same vibration mode These resonances,
caused by the use of characteristics of stainless steel in thgywever, do not have the same circumferential vibration

computations €, , Ct, andp; see Sec. )l

Linear amplitude

Vibration mode m

FIG. 7. Experimentalsolid lineg and theoreticaldashed lines; value points
have been connected for claditidentification of vibration modesn=15
and m=20 in the shell length, ata) k;a=11.9; (b) k;a=11.7; (c) k;a
=17.0, and(d) k,a=17.4, all extracted from Figs.(& and (b).

2038 J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002

mode n. This particularity is highlighted when only one
mode along the length is considered, taking into account the
circumferential modal contributions: moae= 18 in Fig. 8.
Further, in this same figure, the frequency position of reso-
nance peaks with given vibration modes remains the same
for different incidence angles: it is the case for the resonance
n=4 andm=18 atk;a=14.5. This example shows com-
plete identification of the vibration modes,m) of the same
resonance for a number of closely spaced incidence angles.
Hence, several resonances are found at identical frequency
positions fory,;=21° andy,=20° (Tables | and ).

V. CONCLUSION

Bistatic measurements of acoustic scattering from a fi-
nite air-filled elastic cylindrical shell, immersed in water, are
considered. Resonances relevant to Thevave are investi-
gated. Vibration modes in characteristic dimensions of the

Haumesser et al.: Finite shell vibration modes



<+ ACKNOWLEDGMENT

o= e The authors wish to thank Dr. J. G. Chiumia for his
11 = contribution to the readability of this paper.

1B. Zerr, A. Tesei, A. Maguer, B. H. Houston, and P. A. Sletner, “Classi-
fication of underwater elastic objects based on aspect dependence of their
acoustic signature,” 5th European Conference on Underwater Acoustics,
Lyon, France, Conference Proceedings, 875—@800.

—91.50 2M. Tran Van Nhieu, M. Gensane, S. Fioravanti, A. Tesei, A. Maguer,

Yi=2l B. Woodward, and P. A. Lepper, “Detection of a buried water-filled cy-

il

= lindrical shell by the wavelet transform technique,” 5th European Confer-
ence on Underwater Acoustics, Lyon, France, Conference Proceedings,
1091-1096(2000.

3K. Gipson and P. L. Marston, “Backscattering enhancements due to re-
flection of meridional leaky Rayleigh waves at the blunt truncation of a
tilted solid cylinder in water: Observations and theory,” J. Acoust. Soc.
¥, =21° Am. 106, 1673—16801999. )
“N. Touraine, L. Haumesser, D. Bdtot, G. Maze, A. Klauson, and J.
Metsaveer, “Analysis of the acoustic scattering at variable incidences
from an extra thin cylindrical shell bounded by hemispherical endcaps,” J.
Acoust. Soc. Am108 2187-21962000.
SM. L. Rumerman, “Contribution of membrane wave reradiation to scat-
Il tering from finite cylindrical steel shells in water,” J. Acoust. Soc. A48,
= 55-65(1993.
v, = 20.5° 6X.-L. Bao, “Echoes and helical surface waves on finite elastic cylinder
excited by sound pulses in water,” J. Acoust. Soc. A4, 14611466

vy
1 (1993.
M. Tran Van Nhieu, M. Gensane, A. Tesei, S. Fiovaranti, and A. Maguer,
vy
[
2

o
1

Relative linear amplitude

“Scattering by a fluid-filled finite cylindrical shell: Comparison theory-
experiments,” 4th European Conference on Underwater Acoustics, Rome,
Italy, Conference Proceedings, 819—-82998.
8L. Haumesser, A. Baillard, D. Deiltot, and G. Maze, “Behavior of first
guided wave on finite cylindrical shells of various lengths: Experimental
investigation,” J. Acoust. Soc. Anl09, 583-590(2001).
A 9S. F. Morse and P. L. Marston, “Meridional ray contributions to scattering
10 15 20 by tilted cylindrical shells above the coincidence frequency: Ray theory
and computations,” J. Acoust. Soc. Ah06, 2595-26001999.
10F, Leon, F. Lecrog, D. Deultot, and G. Maze, “Scattering of an obliquely
. L incident acoustic wave by an infinite hollow cylindrical shell,” J. Acoust.
FIG. 8. Theoretical resonance spectra foe 18, at successive incidence Soc. Am.91, 1388—1397(1992.
anglesy; . s, F. Morse, P. L. Marston, and G. Kaduchak, “High-frequency back-
scattering enhancements by thick finite cylindrical shells in water at ob-
lique incidence: Experiments, interpretation, and calculations,” J. Acoust.
: . - Soc. Am.103 785-794(1998.
.She”.(ll'e" Clrcumference and lengthere eXpe”mentallly 12p, pareige, P. Rembert, J. L. Izbicki, G. Maze, and J. Ripoché ftivtie
identified. Experimental results are compared to approximate impulsionnelle nurigsee (MIN) pour lisolement et ldentification des
calculations for the thick shell. The identification performed résonances de tubes immesge “Digitized pulse method (MIN in

; ; ) ; French for isolation and identification of resonances of fluid-loaded cy-
in an azimuthal plane normal to the shell's axis shows the | 4 .* shells,” Phys. Lett. A135 143—146(1989).

possibility, for several resonances within the spectrum, t03G. Maze and J. Ripoche, “Mbode d'lsolement et d'ldentification des

Dimensionless frequency (k,a)

have the same mode of circumferential vibratiormThe sec- Resonance$M.l.I.R.) de cylindres et de tubes soumisiae onde acous-
ond identification performed a|0ng the shell axis provides tique plane dans I'eau,” “Method of isolation and identification of reso-

o . . . ! nancegM.I.I.R.) of cylinders and cylindrical shells insonified by a plane
the determination of lengthwise vibration mode Reso- acoustic wave in water,” Rev. Phys. Apfl8, 319—326(1983.

nances can be fully identified experimentally by their vibra-**S. F. Morse, “High Frequency Acoustic Backscattering Enhancements for
tion modes (] m)_ This enables experimental differentiation Finite Cylindrical Shells in Water at Oblique Incidence,” Ph.D. disserta-
’ . . . . . tion, Washington State University, Department of Physics, 1998.
of resonances whose circumferential vibration mode is thes; w1 conoir. P. Rembert, O. Lenoir, and J. L. Izbicki, “Relation between
same. Within the spectrum, one moaglecan be obtained for  surface helical waves and elastic cylinder resonances,” J. Acoust. Soc.
resonances with various modes Further, a resonance of AM- 93 1300-13081993. _ _ _
. . . . F. Lecrog, G. Maze, D. bmuiltot, and J. Ripoche, “Acoustic scattering

given vibration modes is observable at a number of SUCCES~rom an air-filled cylindrical shell with welded flat plate endcaps: Experi-

sive angles at the same frequency, in backscattered spectramental and theoretical study,” J. Acoust. Soc. A9, 762—769(1994.

J. Acoust. Soc. Am., Vol. 111, No. 5, Pt. 1, May 2002 Haumesser et al.: Finite shell vibration modes 2039



Phased array element shapes for suppressing grating lobes
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Most techniques for suppressing grating lobes in phased arrays while relaxing the interelement
spacing requirement involve redistributing array elements in sparse aperiodic patterns, or varying
the transmit-receive beam patterns. An alternative is presented which uses oversized array elements
to eliminate grating lobes as a direct consequence of the element shape. It is shown that by using
carefully shaped, overlapping elements, maximum scan angle can be exchanged for a reduced
interelement spacing requirement. ZD02 Acoustical Society of America.
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PACS numbers: 43.20.Rz, 43.20[BIEC]

I. INTRODUCTION narrow the directivity envelope substantially, naturally sup-
pressing grating lobes for a limited steering angle. Aspects of
Phased arrays have long been used for both transmissiahis technique have been explored for antenna arralyst it
and reception of sound waves in a variety of acoustic applihas received little attention in the context of acoustics or
cations. Ultrasonics, in particular, has a long history ofultrasonics.
phased arrays for applications such as underwater acoustics, In this study, it is shown that overlapping arrays of vari-
medical imaging, ultrasonic therapy, and nondestructiveous oversized elements can be used to suppress grating
evaluation(NDE). lobes, and allow a relaxed interelement spacing requirement
The most important parameters affecting the cost andor a limited steering angle. A brief review of relevant phased
performance of a phased array system are the number afray theory is introduced, followed by a consideration of
elements and the interelement spacing necessary to provideogerlapped arrays of common element shapes which sup-
desired steering response. In a traditional periodic array, apresses grating lobes to some extent, at the expense of a
interelement spacing of less than half the wavelerigt®) is  nonuniform main lobe amplitude. An optimal element shape
required to mitigate detrimental grating lobesBecause the is then developed, which effectively squelches grating lobes
main lobe width is dependent only on the spatial extent ofwithout influencing the main lobe. For convenience, only
the array, the generation of a narrow beam will usually re-one-dimensional arrays are considered in this paper, although
quire a large array and an inordinate number of individuallymost of the techniques may also be applicable to higher-
driven elements. dimensional arrays.

Various methods have been proposed to relax the inteli BASIC THEORY

element spacing requirement to create sparse arrays of fewer ] , .
The far-field response of an arbitrary source condition

elements with reduced grating lobes. Because the grating . . LT ,
lobes are a result of the periodicity of the element positionsta! P€ derived using Huygen's principle, which may then be
ienored to describe the specific case of a traditional linear

they can be reduced through the use of a random or aperiod ) . -
distribution of elements, although at the expense of a re@"@y with uniformly spaced elements. This is largely based
on the analysis given in Refs. 1, 2, and 11.

duced dynamic range®* Others have proposed using differ-
ent element patterns for transmit versus receive modes;,  A. Huygen’s principle
by relying on very short pulsésWhile these techniques are , - .
generally successful, they are applicable only for pulse-echo Huygen's principle states that any wave-producing

systems. ot contuous wae sytes, such o dspeake 18 3,08 Mt 20 e umberof o
microphone arrays, or parametric audio sourfes. y 9 AP

Most of these earlier studies involve addressing the po§at|ng point source radiates energy in spherical waves de-

sition and distribution of the individual elements, but little SC"1P€d by the equation
attention has been paid to the characteristics of the elements dpg .

. L Proini( R) = —=— el (@t 7kR
themselves. It is well knowh that the directivity envelope poin R

pattern is wholly determined by the shape and size of the . . . ]
constituent elements, so it is logical that the element shap@neredpo is the source amplitud® s the distance from the

can be used to control various steering characteristics. IHCUrCe t0 the point of interess, s the driving frequencyk is

particular, elements larger than the interelement spacing wifhe wave nurr_lb(_er,_ anglis the unit imaginary num_ber.
With an infinite baffle assumption, modeling a one-

dimensional source with arbitrary source amplitude distribu-

dMedia Laboratory, Massachusetts Institute of Technology, Roomtjqn s(x), as shown in Fig. 1, results in the pressure distri-
E15-492, 20 Ames St., Cambridge, MA02139. Electronic mail: LoV o
pompei@media.mit.edu bution in an integral form:
PDepartment of Civil and Environmental Engineering, Massachusetts Insti- S(X)
tute of Technology, Room 1-272, 77 Massachusetts Avenue, Cambridge, p(l’,l9)=ej“’tf e—ij dx. (2)
MA 02139. Electronic mail: scwooh@mit.edu R

: @
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p(r,8) C. Steering

Beam steering is simply shifting the overall response
g/ i
with respect toB, such that

/sourcc s(x) H'(B)=H(B+ By, @)

where B is the steering angle. This constant shift in the
“transform” domain is equivalent to multiplying bg!*#s* in
FIG. 1. The geometry of the one-dimensional source under considerationthe “source” domain, i.e.,
s'(x)=s(x)elkps, (8)
The source amplituds(x) is the contribution of source This factor is simply a space-dependent phase shift, or time

elementdx to the pressure at point, and relates to the delay, distributed linearly across the array.
source’s normal vibration velocity amplitudgx) as s(x)

xr—"

=(pow/2m)u(x). D. Polar cut
The €“! term may be omitted for a linear and nondis-
persive System, ani can be approxima‘[ed as When analyZing the one-dimensional dlreCthlty of a
’ two-dimensional source, it is useful to reduce the source
R=(r2+x2—2rx sinf)Y2~r —x sin g+ —. 3) function to a one-dimensional equivalent, as described in

Ref. 1. Under a similar far-field approximation as discussed
earlier(where the distance from the array is much larger than
the array itself, two-dimensional sourcé(x,y) can be re-
duced to a one-dimensional equivalent:

Substituting this approximation into the integral gives
1 I :
p(r , 0) — F e*jkl‘J’ S(X)eJkX sin ﬁe*]k(lezr) dx. (4)

The last factor in the integral is significant only for small S(X)zf S(x.y) dy. ©
whenr<1/2kx?, the Fresnel distance. The other factors are

. . . For rectangular elements in a traditional linear array, this
not dependent on, and therefore it describes the pressure in. . . .
. . . .~ integral does not vary ovex, so this technique offers little
the far field of the source. For simplicity, this analysis will

address only far-field effects, limiting the extent of the arrayadvantage. This method becomes very useful, however, when

to those dimensions for which this approximation is satisﬁed.Shaped elements are described in the next section.

E. Discrete array

B. Fourier analysis A sources(x) comprised of a discrete array of identical
elements, shown in Fig.(8), can be treated as an infinite
number of copies of the element source functig(x) mul-
tiplied by an overall aperture functiom(x), which is gener-
ally rectangular:

If the change in variables’ =x/\ and B=sin 6§ is made
while disregarding the amplitude scaling withthe integral
describing the far-field directivity becomes

H(B)= J s(x')elZ™ A dx’, ® S(x)=SO(X)*(W(X)- > 6(x—xn)), (10

n=—wx
This is the Fourier transform of the source distribution func-

tion scaled by . This important result makes the analysis Wherex, is the location of theath element, and the asterisk
of the far field straightforward and intuitive. denotes convolution. For a periodic array, whege nd, the

As an alternative, which is more suitable for discretef@r-field responsed(8), given by the Fourier transform of
Fourier transform(DFT) simulation, one can substitute the source functios(x) is
Q=pI\, and arrive at
2
This can be conveniently written as the product of two
In this case, the scaling with is takenafter the Fourier directivity functions,H,(8) andH,(3):

transform, so that downsampling prior to taking the DFT is 5 _ H 15
not necessary. (B)=Hi(B)H2(B), (12)

- mA
H(B)=So(,8)~(W(ﬁ)*m=2m 5(/3— T) ) (11)

=f(Q)=f s(x)el2™ M dx. (6)

with H{(B8) =So(B) andH,(B) equal to the terms in paren-

theses. In this study, only the quantii,(B) is of interest,

(1) Given the source distributiog[n], wheren=xT is a  as it is wholly dependent on the individual element charac-
sufficiently fine spatial sampling of the source function teristics.

Simulation Steps

(2) Zero pads[n] An example array with rectangular elements is shown in
(3) Compute the DFTH(Q)=DFT{s[n]} Fig. 2(a). Here, the rectangular elements have widthnd

(4) Rescale the angle axj3=\() the overall array has a width &f. The normalized responses
(5) Normalize(if desired. from these components, plotted in FigbRare
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FIG. 3. The directivity of a dense array with element sizequal to the
element spacingl. The plots show the changing position and amplitude of
the main lobe and grating lobe as the beam is steered. Notice that the
magnitude of the grating lobe is equal to that of the main lobe wBen
=\/2a.

domain affects the individual elements in the transform

domain.
Sd -2 /d - id 0 /d d 3 /d
©) F. Dense arrays
FIG. 2. Atypical linear array, with rectangular elements. The physical com- In many app”cations' it is desirable to maximize sensi-

ponents of the array, including the elements of wigtinterelement spacing .. . : . .
d, and overall array sizd®, are shown in(a). The contributions of the tivity per unit Iength of the array, which necessitates the

directivity function due to the element size and overall array size are showfnaximization of the density of the array. In a traditional
in (b). The final directivity functionH(8) is shown in(c). Recall that linear array, this is accomplished by making the interelement

B=siné. spacingd equal as close as possible to the element aize
This type of array may be calleddense array
so(X)=rect(a)=H4(B)=sinc(7aB/\), (13 For an array with element sizeequal to its interelement

spacingd, the grating lobes in an unsteered beam are coin-

w(x)=rect('D)=W(g) =sinc(7DBIN). (14) cident with zeros in the directivity envelopd,(B), as
The rectangular function recaj is unity for —a/2<x  shown in the upper plot of Fig. 3.
=<a/2 and zero otherwise, and sing € sin X)/x. The con- For clarity, the magnitudes are plotted with respect to a

stant interelement spacing dfcreates periodic lobes at in- normalized angleg’=Bd/\, so that variations in wave-
tervalsd/\ in H,(B). The final responsel(3) is shown in  length will simply rescale the horizontal axis, and affect the
Fig. 2(c). Only the interval —1<B8<1 maps to physical Visible region, not the shape of the response.

space, so this interval is usually termed thisible region As the beam is steered, the grating lobe increases in

Any additional lobes present in this region are terngeat-  magnitude, while the main lobe decreases. The main lobe

ing lobes and grating lobe have equal amplitudes wheh=1/2, or
This result illustrates two important intuitive points: equivalently whenBs=\/2a. This sets a limit on useful

. . . e steering angle to a small range of angles wheye \/2a.
(i) The far-field response consists of an infinite set of gang 9 g hes

copies of the overall aperture respon¥ég), spaced G. Steering performance

by \/d.
(i)  This total response is then modulated by edlement The most important indicators of phased array perfor-
response, or the directivity envelopé, (). mance which depend on array geometry @yehe main lobe

magnitudeM, (2) the grating lobe magnitudg, and(3) the
Thus, in the “source” domain, the individual element ratio between the amplitude of the main lobe versus that of
response influences the overall response of the array in the grating lobef=M/G. Recall that the beam width is in-
transform domain, while the overall window in the sourcedependent of the element shape, and is simply associated
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a > dje

Traditional linear array
d=a

FIG. 5. Simple staggered element pattern. For clarity, each vertical element
is shaded differently.

20 T T T T T
—— wd) Ill. OVERSIZED ELEMENTS: STAGGERED ARRAYS

dB

One way of improving the lobe rati$ is to narrow the
' directivity envelopeH(B) of the array. Narrowing this re-
1o \\ ‘ ( ‘ ‘ ‘ L sponse will somewhat limit the maximum steering angle, but
2 -L5 -l 0.5 0 05 ! 1.5 2 will further suppress grating lobes which occur at large
Normalized steering angle "= d/ . . . . .
angles. This necessitates increasing the element size com-
FIG. 4. A rectangular element dense linear array, whir@. The upper ~ Pared to the interelement spacing. One of the ways to accom-

plot shows the magnitude of the main lobé and grating lobeG as a  plish this in a planar array is to allow the interleaving or
function of normalized steering ang)g, , and the bottom plot shows the staggering of elements.

ratio ¢ of main lobe to grating lobe amplitude. Note that, while the magni-
tude of the main lobe does not diminish substantially for small angles, th%
main lobe to grating lobe ratio vanishes quickly for even small steering

angles. A simple staggered array pattern is shown in Fig. 5. In
this case, the individual element is a vertical set of rectangu-
lar apertures of widtta driven as one unit. Because the ele-

ents are effectively overlapping, the element width is twice
he interelement spacind. Taking a polar cut along thg
direction shows that the equivalent 1-D source function
So(X) is simply a rectangular window of widta.

The main and grating lobe magnituddk and G, and

their ratio, are shown in Fig. 6. Clearly, this technique does

i=
T
I

. Staggered rectangular elements

with the overall extent of the array. As the characteristics
of interest are due only to elements themselves, an infinitel
large array is assumed, so that the lobes are impulses.

For a dense rectanguléiraditional lineayarray, where
d=a, the main lobe magnitud®l and grating lobe magni-
tude G as a function of steering angle are

Mecl Bs) =Sinc(mBsalN), (15

Grec Bs) =sinc(m(Bsa/N = 1)), (16)
Staggered rectangular array

and the ratiof of the main lobe to grating lobe is d=a/2

sinc(mwBsal\)

Srecl Bs) = sinc(m(Ba/A*+1))" 17) 0 ' ‘ // TS
In normalized angular coordinatgk = Bd/\, g 0 o I/
Mecl B2) =sinc(By), aw |7 |
Grecl BL) =SiNC(r( BL 1), ay 2 s e
, sinc(mBY) ? ' ‘
§rec£ﬁs)=m. (20) ] 10 e

These resultgin decibels are plotted in Fig. 4. Note
that, while the main lobe amplitude is strong for modest i s :
angles, the ratia’ diminishes very quickly as the beam is Nm;ﬁ',edstemgangle f-)f & ! b3 :
steered. An improved phased array system would have a
more uniform main lobe response and lobe r@tiﬁm‘ a de- FIG. 6. The lobe magnitudes and main to grating lobe magnitutie a

- : - ‘ectangular staggered array, with interelement spacing equal to half the ele-
sired steering sector. As these functions are WhO"y deper'[ment width d=a/2). Note that performance is diminished compared to the

qent on the el_ement source functisg(x), this source func-  yaditional linear array, both in main lobe magnitude and main to grating
tion can be tailored to improve the lobe ratjio lobe ratio.
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Staggered diamond array

Staggered circular arra
d=a/? 28 y

d=a/2

dB

o 10 L 1 L 1 1 1 L /
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -10 ¢ . f :
Normalized steering angle = d/ -2 -1.5 -1 -0.5 0 . 1 1.5 2
Normalized steering angle = d/

FIG. 7. A staggered linear array of diamond-shaped elements, with theil':IG 8. The lobe magnitudes and main to grating lobe rafir a staggered
more gradual taper, leads to a more uniform directivity envelope than the. ~" ™

staggered rectangle array. There is also substantial improvement in main %rcular array. Wh”e.g S generall_y |mproved cor_npared o that in the dia-
grating lobe ratic. mond array, the main lobe amplitudi# is less uniform across steer angle.

narrow the array envelope, but does not improve the i&tio where circ @) = ya“/4—x* for —a/2<x<a/2 and zero oth-

due to the large “side lobes” now present in the directivity erwise, andl, is the Bessel function of the first kind.

envelope. Furthermore, this technique significantly reduces In this case,_the element widthis agan twice the in-
erelement spacingl. The large element size narrows the

the magnitude of the main lobe for even modest steerin%
angles, which is of course undesirable. rray response to an exte_nt, but the more gradual taper of the
circular aperture lowers side-lobe magnitude, and thus more
) effectively suppresses the grating lobe. This is clearly seen in
B. Staggered diamond elements the lower graph of Fig. 8.
The diamond pattern of array elements shown in Fig. 7 For moderate steering angleg(|<0.4), the lobe ratio
is worth considering, as it has a natural tightly packed{ is superior to that of a rectangular or diamond shape, albeit
configuration, and, being very similar to the rectangularat the expense of an attenuated main lobe. Here--Bi&B
array, is convenient to fabricate. Each element can b&ain lobe angle is atB¢|~0.26, compared to the corre-
described as a triangular source function, whereali( sponding|B¢|~0.32 for the diamond shape, §B¢|~0.45
=(—(2/a)x+ 1) sign (x) for —a/2<x=a/2, and zero other- for a traditional rectangular element. In those applications for
wise. Its corresponding response (isith a scaling of the Wwhich the per channel cost is of greater concern than sensi-
abscisspthat of the staggered rectangular response squaredVity, this can be a worthwhile tradeoff. However, for many
. applications where maximum sensitivity is important, this
Sdian X) = ri (a), (1) solution is inadequate. In the next section, an optimal ele-
Sgiard B) =[sinc(wBal2\)]2. (22) ment shape is developed not only to suppress grating lobes

) . but also to maximize main lobe amplitude.
The more gentle taper in the element source function leads to

a more uniform directivity envelope, leading to less attenua-
tion of the main lobe across steering angle, as well as imI-V' OPTIMAL ELEMENTS

provement in the lobe ratig. From the previous examples, it is shown that control of
element shape, coupled with the use of staggered elements,
C. Staggered circular elements improves the ratio of main lobe to grating lobe amplitude, at

) ] ) the expense of diminished main lobe amplitude. An optimal

The staggered circular element array, like the diamongjement shape would produce a directivity envelope corre-
element_ array, creates a more uniform dlrect|v_|ty envek)pesponding to a rectangular window function, which is unity
due to its more gentle element taper. For this array, thgqr|g|<g,, and zero otherwise. For steering angles smaller
source function and its response for a circular element than,Bo, the main lobe would be unattenuated, but the grat-

diametera are simply ing lobe (at Bg) would be fully suppressed, so long as
Scire(X) =circ(a), (23)  |Bsl>Bo. The corresponding element shape which produces
such a function is, of course, the sinc function.
S.(B)= Ji(mBalN) (24 The difficulty in using the sinc function as an element
cre mBalN shape lies in both its infinite spatial extent and the require-
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ment of signal inversion to reproduce negative swings. Lim- ! ‘ ' * ‘ ' * '
iting the size of the element will diminish the sharpness of so)

the directivity envelope, but through creative element desigr
this effect can be minimized. Recall that because of the pola 037
cut approximation in the one-dimensional array, the elemen
source function of interest is actually thertically inte-

grated shape of the element, providing a great deal of flex- \/ \/

ibility in designing its actual shape. As far as the far-field —
approximation holds, the element can be offset or distributec, s . ; ; ; s . : : ;
as desired in the vertical dimension, allowing interleaving or RPN . Fe g . O, . oy . F e

other layout advantages.

The requirement of inverted areas of the elements may . , ‘ :
depending on the specifics of the transducer, increase tran:
ducer complexity, and add challenges in signal routing. How-
ever, a signal inversion is usually easy to implement com- 1 ]
pared to generating a new delay line channel. In many case: ,
the electrical connections to the inverted elements can sim
ply be reversed.

A. Altering the elements ‘ . . : ‘ , ,

The techniques presented in this study prescribe various

. . . . IG. 9. An example of a sinc-type array element. The upper plot shows the
element source functions, which can be Implemented n €lement source functiorg,{x) =sinc (2 Bex/\), which (if it were infi-

variety of ways. Most convenient for acoustic transducers argjtely long would produce the array envelople; gd/3) =rect (28).

the following: shown in the lower plot. By using the array envelope to limit maximum
. steering angle t@,, grating lobes can be suppressed, allowing the relaxing
1. Element shading of the interelement spacing restriction.

It may be possible, depending on the application, to
shade the response of each element, so that while the element 5 practical implementation may use some combination

itself maintains a traditional rectangular or other convenienty thase methods. For a one-dimensional array, it is probably

shape, the source functicg(x) is no longer a simple rect- 4t siraightforward to construct uniformly driven, specially
angular aperture. For ultrasonic transducers, this could CO&haped array elements.

respond to adding gradients in the thickness, density, or reso-
nance mechanism along the vibrating element, or by

deploying an acoustic filter to modifgp(x). B. Optimized element: Windowed sinc

2. Element shaping The ideal element shape for producing an array envelope

. o with cutoff angleB, is the sinc function, given b
According to the polar cut approximation, an element glefo 9 y

driven uniformly will have an equivalent source function Ssind X) = sINC(2 BoX/N), (29
equal to the transverse integral across the element. Thus, ¥hich has the corresponding response of

element can be shaped as needed to provide the desired re-

sponse. This is most appropriate for a one-dimensional array. H1,sind ) = rect(23). (26)

Proper selection of shapes allows the use of staggerefls shown in Fig. 9, the parametg, corresponds to the

elements which are necessary for narrowing the array eNV&ilation of the sinc function in the upper graph, whose zero
lope. Care must be taken with effects along the Vert'cakrossings are at integer multiples o273, .

(nonazimuthgl direction, as the elements are no longer uni- Recall that grating lobes are spaced at angiks
form along this axis; however, as long as this dimension is— Md, so to avoid grating lobes completely, the grating
much larger than the element width, creating a vem@rti-  |opes must be located BBc|> 8o, or
cally) narrow main lobe, these effects should be small.
A
d< —. (27)
3. Matrix approximation 2P0

In some transducer designs, such as diced-piezoelectri8ince By<1, this interelement spacing constraint is always
crystals or small microphones, it is inconvenient to shape théess stringent than that of a traditional linear array. In fact, if
individual elements accurately. As an alternative, groups ofhe maximum steering angle is limited to30 degrees
small subelements may be gathered and cross-coupled to ap-0.5), the interelement spacing, and therefore the required
proximate a larger element having the desired source funaumber of elements, can be decreased by half, without intro-
tion. This may require a more complex interconnectionducing grating lobes.
scheme, but the reduced delay channel count may make this Because this type of element is not physically realizable,
worthwhile. a windowed sinc function,
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0 0

FIG. 10. Three proposed element source functigyig), each of which is a

windowed sinc function, are shown in the upper graph. Below, their result+IG. 11. Three sizes of the optimal sinc-shaped element are shown. The

ing array envelopes are shown. With a larger element size, the correspondertical dimension, having no substantial impact on beam steering, is in

ing response approaches an ideal rectangular function. arbitrary units. The black areas, representing negative swings in the sinc
function, are driven inverted with respect to the white areas.

Swsind X) =sinc(27 Box/\) - recta, (28) arrays. If desired, the shape can be reflected acrossakis,
which is truncated to widtla, may be used instead. This has Or subdivided into smaller segments, which can then be in-
the corresponding response: dividually moved in they direction. The impact of these

] transformations should be very small, even in along the el-

Susind B) =rect(2Bg)* sinc(map/N). (29 evation dimension, as long as the far-field approximation

The limitation of the length of the array element leads ton0lds and the overaly dimension is much larger than the
a reduction in sharpness of the directivity envelope cutoff, a§lément size. Issues related to nonazimuthal effects will be
well as slight ripples in the main lobe magnitude for small€xplored in a later section.
steering angles. Of course, one could also use other window
shapegsuch as Chebyshgwo adjust these effects. D. Choice of element width

As it is logical to include an integral number of “lobes”
(areas between zero crossings the element function, we
can consider element lengttey=N/ 7By, a1=2N 7By,
anda,=3\/7B,. These elements, with their corresponding
response envelopes, are shown in Fig. 10.

As has been discussed, the elimination of grating lobes
requires an interelement spacinig<\/283,. Note that the
zero crossings of the element’s sinc function are spaced in a
manner proportional ta/By. Therefore, the maximum al-
lowable interelement spacing relative to the dilation of the
C. Shaping elements source(sing function will be constant. In other words, any

As discussed in an earlier section, the proposed elemeghanges in the ratid/ 8, will simply rescale thec axis of the

two-dimensional element, so long as spacing, and limiting steerable angle.
In order to minimize the required number of elements by
maximizing interelement spacing, the spacthg\/28, can
be used, which occurs slightly after the third zero crossing in
The most straightforward method is to simply shape the elgh_e sinc function. This indicates that a convenient element
: : . width would bea=3\/7B,. In order to panel elements
ements in a two-dimensional plane as i :
cleanly,d can be reduced slightly = 3\/278,. The final

1 for |y|<sinc(2mwBx/\)-rect(a) 30 array is shown in Fig. 12.

J' 5o(x,y) dy=sinc(27Box/\)-rect(a).

So(X,y) = .
o(X.Y) [O otherwise

This maintains symmetry in the vertical direction, and V. PERFORMANCE
leads to a straightforward implementation. The element  The array proposed in Fig. 12 has an interelement spac-
shapes for varioua are shown in Fig. 11. While any desired jng of
length a can be used, it is logical to use element lengths

A . 3\
which are bounded by zero crossings, as each of these areas j_ (31
specify discrete subelements. 27y’

Note that an arbitrary offsgt=uv(x) can be added along \yhich corresponds to a limiting steering angle of
the y direction without impacting the resulting integral be-
cause the response is integrated over the vertical direction. _ 3\ - L (32)
This allows a “warping” suitable for constructing staggered " 27d 2d°
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Arbitrary Units
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FIG. 14. The two styles of sinc elements are shown, with their respective

FIG. 12. Proposed array pattern, consisting of elements shaped as sinc furl&PONSEes, as a function of normalized angle. The black regions are driven

tions. Each element is shaded differently to show their separation. Thos verteq. For consistency with earlier figures, they are plotted against the
regions whose excitation polarity is to be inverted are marked with-a ©  normalized angleg’=ga/2x andy’ = yL/2\, wherea=2d.
sign. The horizontal axis is scaled relative to the rati@,, and the vertical

axis is of arbitrary units. the grating lobe for limited steering angles, while maintain-

ing a near-constant main lobe amplitude.
As with most phased array designs, this type of design

The element width is taken @=d/2, as in the earlier inter- ¢ only meet the criteria for the smallest wavelength it is

leaved designs. The resulting main lobe amplitilg,. and designed to handle, that is, far=2d3,. Any increase in

main lobe to grating lobe rati@g;,. are shown Fig. 13. simply increases the steering cutoff angle.
Clearly the array optimization has successfully suppressed

VI. TWO-DIMENSIONAL BEAM CHARACTERISTICS

From the previous section, the directivity envelope in

Staggered optimal sinc array the azimuthal plane approximates a rectangular function lim-
d=a/2 ited by steer angl@,. Depending on the particular selection

of tiling geometry, the vertical pattern of the envelope can
vary significantly. For this reason, it is important that the

0 — ; performance, in particular the presence of spurious lobes, is
— fgm(( 2 assessed in the vertical platie.
-0 F S y The analysis for the two-dimensional array is much like

X that for the one-dimensional array, but using a two-
dimensional Fourier transform. The vertical size of the ele-
i ment can be defined ds and elevation angle=sin¢.

1 15 2 Recall that, because of the polar cut approximation, the
vertical dimension can be scaled, offset, or moved as desired,
30 , x x ( \ . . . R
U J — as long as the far-field approximation holds and the elements
e itk do not overlap. This allows an unlimited number of element
=B . tiling methods, although the most important has compact

size, such as that shown in Fig. 12.

The linear array proposed in the previous section con-
19, rr R oy PR 1 e 2 tains two types of elements, both with equivalent azimuthal
S= responses. A two-dimensional analysis shows the expected
6. 13, Macnitude of main lobe. and main to arating lobe ratio. for azimuthal cutoff at 84| = 0.5 in Fig. 14, but the vertical char-

. . agnitude of main lobe, ana main to grating lobe ratio, Tfor the s . . . . . .
optimal array shown in Fig. 12. Steering angle is effectively limited to aCte”.Stlcs may 'gl've rise to spurious vertical IObesf if thej main
|B4]<0.5, over which the main lobe amplitude is nearly constant, and théqbe is not sufficiently narrow. Because_the_ vertical dlmel’.l-
grating lobe is effectively suppressed. sionL of the element makes equal contributions to the main

Normalized steering angle
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f— smoothly exchanged for maximum steering angle. In many

AVAVAVAVYAVAVYAVE: instances, this may lead to a substantial reduction in delay-
L3 T191 Y line channels for a phased array system, as is particularly
9 T92 9 valuable in continuous-wave systems.
40 Ly One limitation may be the cost and complexity of physi-
R SR B Sk B SR N SR SN i S cally fabricating the proper transducer elements, or in invert-

[ ) rY EYIRTIRY R RE ing some subelements. While prohibitive for some applica-
BRI RI R R R RARARY Y tions, particularly in very-high-frequency ultrasound, there
o 28 .' 8X0X8 .‘ L0%8 are many applications for which this may be a suitable and
YAXAXAXRX0X000 useful technique.
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Full-wave modeling of therapeutic ultrasound: Nonlinear
ultrasound propagation in ideal fluids
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The number of applications of high-intense, focused ultrasound for therapeutic purposes is growing.
Besides established applications like lithotripsy, new applications like ultrasound in orthopedics or
for the treatment of tumors arise. Therefore, new devices have to be developed which provide
pressure waveforms and distributions in the focal zone specifically for the application. In this paper,
a nonlinear full-wave simulation model is presented which predicts the therapeutically important
characteristics of the generated ultrasound field for a given transducer and initial pressure signal. A
nonlinear acoustic approximation in conservation form of the original hydrodynamic equations for
ideal fluids rather than a wave equation provides the base for the nonlinear model. The equations are
implemented with an explicit high-order finite-difference time-domain algorithm. The necessary
coefficients are derived according to the dispersion relation preserving method. Simulation results
are presented for two different therapeutic transducers: a self-focusing piezoelectric and one with
reflector focusing. The computational results are validated by comparison with analytical solutions
and measurements. An agreement of about 10% is observed between the simulation and
experimental results. @002 Acoustical Society of AmericdDOI: 10.1121/1.1468876

PACS numbers: 43.25.Cb, 43.25.Ed, 43.25MirH]

I. INTRODUCTION tence of nonlinear effects for ultrasound propagation, which
lead to a steepening of the wave profile. For high signal
The different therapeutic effects of intense ultrasoungntensities and strong focusing sources, the nonlinear steep-
(US) like stone destruction, cavitation, and tissue heating byaning resuits in the formation of a shock wave. The first step
US absorption, together with the ability of ultrasound t0oyards an understanding of the relation between the param-
reach deeply situated tissue in a noninvasive way, are thgiers at the US source and the achieved therapeutical effects
foundation of several medical applications. Today, the clini-consists of the investigation of the physically describable US
cal application of therapeutic ultrasound is established ifhropagation(gray box in Fig. 1. Therefore, an accurate
lithotripsy." It is currently evaluated for orthopedic therapies gjjation tool which takes nonlinear effects into account is
and for the treatment of prostatic disead&ecently, a num- inevitable.
ber of new applications such as the noninvasive thermal ab- Linear models are not able to accurately predict the im-
lation therapy of tumofSor the occlusion of blood vessgls ortant field parameters, and are therefore inadequate to
were proposed. All these therapeutic applications use hig Simulate therapeutic ultrasound. Most nonlinear-acoustic

mter;;e, l;]ocuse_d lIJ:IFrasloutrr@]HllFfl#).t d effici fth models are based on a second-order approximation of the
s shown in F1g. 1, the efiects and etliciency o .esecomplete nonlinear equations of fluid motibhAs a model
therapies are directly related to the field parameters in th%quation for the propagation of finite-amplitude sound for

focal area inside the patient’s body, such as the maximu erapeutic applications, Halfajises the Westervelt equa-

and minimum amplitudes, their spatial distribution, and thetion which accounts for nonlinear propagation of locall
waveforms. Only the knowledge of these field parameters, bropag y

. . . . lane waves in a thermoviscous fldidn solving the wave
improves the understanding of the interaction between th L - S -

: : . : equation in the limit of a lossless fluid with a standard finite-
ultrasound wave and the biological tissue, and is therefor

essential for controlling and improving the therapy. Further—%'ﬁerence_ algorithm in the time d(_)ma{ﬁDTI?), the corre<_:t
eproduction of weak shocks, which occur in therapeutic ul-

more, the ultrasonic field in the focal area is determined b)}'

the design of the therapy systdfocusing gain, signal inten- ELasound:[' arT't not gga}ranteed. ,gnbotr:/(\elr %r:lkgthgd t% model
sity, aperture, excitation waveform, frequehcgnd the erapeutic ultrasound IS proposed by VVOJLIK.IS based on

propagation properties, like nonlinearity and attenuation, oft t|me-d.oma|n f|n|te-element method that_ SOI,VeS the partial
the overlying medium layeréwater, tissup Measurements differential equations for the US propagation in a linear ap-

in therapeutically used transducers clearly show the exisProximation. Only cumulative nonlinear steepening effects
are included by a nonlinear material relationship between

pressure and density. The propagation of strongly nonlinear

@Electronic mail: Siegfried.Ginter@etec.uni-karlsruhe.de ; ; e ; ﬁ%ime
PNow at: Robert Bosch GmbH, P.O. Box 30 02 40, D-70442 Stuttgart,WaveS inan 'de"?" gas Is |_nvest|gated by Yano and |
Germany. a harmonic oscillating piston source. They solve the Euler

9URL http://www-ihe.etec.uni-karlsruhe.de equations with an explicit high-resolution upwind finite-
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ferent US transducers. Finally, some conclusions follow in
ey nonlinear F)ropagation . US field Sec. V.
through tissue layers in focal area
therapeutic effect Il. MATHEMATICAL MODEL
in focal area

The mathematical description of the full-wave US
FIG. 1. The causal relationship between the therapy system and the therRfOpagation model that includes the nonlinear steepening and
peutic effects. the formation and propagation of weak shocks, starts from
the general equations of hydrodynamics for ideal fléids

difference scheme. The most common approach today is 3" ideal fluid the effects of viscosity and thermal conduction
solve the KZK equation numerically, as used by Hamilton@'e neglected and therefore no dissipation of energy occurs
et al,'"2 Bernsten and Ystatf and Tjgtta and Tjgttd In-  during US propagatiofi: The hydrodynamic equationd)
troduced by Khokhlov, Zabolotskaya, and Kuznetd&zK describe the temporal change of mass in a fixed voIMne
describes a parabolic approximation of the nonlinear acousti¢ue to the mass flux across a closed boundary sufaice
wave equation and consistently accounts for the combinefd: (18 and the change of momentum for a moving volume
effects of nonlinearity, diffraction, and absorption, but only V* in Eg. (1b) by neglecting the influence of gravity
for directional sound beams and US propagation in homoge- 3
neous medid:’® The approximation assumes that the trans- _J J J pgdV=— 39,,9\,9” ds, (1a)
verse field variations are slow compared to longitudinal ot v S
variations along the acoustic axis. For strong focusing trans-
ducers this assumption fails, as it does for inhomogeneous EJ f f vodv— — é nds (1b)
media or reflector focusing therapy systems. Rudenko and dt Pl S+ Pgh A
Sukhorukov&® presented an extended model for propagation ) ) ] ] )
of directional sound beams in inhomogeneous media. If on&l€re;t is the time,p, the density of the fluidy, the velocity
nevertheless wants to simulate reflector focu¥imy strong ~ ©f @ fluid particle, ancp, the pressure normal to the surface
focusing system$ with the KZK equation, supplementary S (n represents the outward-directed nor_mal vector to the
propagation models are needed which provide the initial consurface. Assuming that the fluxes are continuously differen-
ditions for the subsequent KZK propagation modeling. Fi-liable, the application of the Gauss integral identity in the
nally, a model of nonlinear diffractive field propagation, limit of V—0 leads to a d'ﬁgzre”t'al formulation. Applying
which is not restricted to the parabolic wave approximationthe identity Eq.(2) to Eq. (1b)
was developed by Christopher and ParffelUsing an d Y
operator-splitting method, this model takes into account non- _f f f PV dvzf f f pg—ng
linear effects in the temporal frequency domain and diffrac- dt v* v+ o dt
tion and attenuation in the spatial transform domain. With an oV
updated version of this model, Christopher considered the =f f f*pg[a—er(ng)vg av,
field propagation in an electrohydraulic shock wave v
lithotripter® To avoid numerical errors associated with the (2
transformations between the time and frequency domains
Tavakkoli et al?® presented a pure time-domain model, Eq. (1) then becomes
based on the approach used by Christopher. Ip

In this paper, a numerical model originating from the -9
equations of hydrodynamics is used. It includes the propaga- ot
tion of nonlinear ultrasound waves and weak shocks in ideal

2

+V(pgVg) =0, (33

fluids for axisymmetric focusing transducers and can be ex-
tended to inhomogeneous media. No restrictions on beam
direction or the focusing systems are imposed; therefore, it
called a full-wave model which inherently includes the ef-

fects of diffraction, refraction, and reflection. The model 'Svarying part. Withv,=0, the perturbation approach in Eq

e iy 4 irodices e scousticvariabes he Scousic depty
: . the acoustic pressume and the acoustic velocity,
ent therapy systems in pure degassed water, which behaves

—2 4 (vgV)vg

9 gt :_Vpg- (3b)

When treating acoustic problems, it is convenient to split the
quantitiespg, pg, andvy into a constant palindex 0 and a

near_ly like an ideal fluid. In a subsequ_ent paper an extension pg=potp, Pg=PotP, Vy=V. (4)
to this new model treats the propagation through attenuating
tissue layers. Inserting Eq.(4) into Eq. (3), the nonlinear acoustic equa-

After a description of the mathematical model in Sec. Il,tions (5) follow
the numerical implementation is shown in Sec. Ill. In Sec. IV
the simulation results are validated by comparison with an 9P
: : : . . —+V(pgtp)v=0, 5
analytical solution and with measurements done in two dif-  dt (Potp) (53
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which have to be fulfilled at the discontinuity. They describe
=-Vp. (5b)  the quantities that are continuous across a shock, namely the

mass flux, the momentum flux, and the flux of energy. From
Neglecting the higher-order terms in the acoustic variableshe second law of thermodynamics, it follows that the en-

N W
= (VV)v

(potp)

the linear acoustic equatiori6) result tropy increases when passing through the discontiRtity,
which is equivalent to dissipation in physical terms. This is
a_p: —V(poV), (63 often called the entropy condition. The amount of this dissi-
ot pation is nearly independent of the kind and strength of the
physical dissipation processes in the shock front and depends
ov . .
—=-—Vp. (6b)  only on the conservation law, used on both sides of the
ot Po discontinuity?> Hence, independently of the physical kind

Together with a linear relationship between pressure an
density, Eq.(6) is directly related to the well-known linear
acoustic wave equation. Modeling the propagation of high
intense US, the linear equations in Ef) are not sufficient.
In order to include steepening of the US wave, the nonline

ind strength of the dissipation processes in the shock front,
the fulfilment of the jump conditions provide the correct
amplitude and speed of the shack.

The extended model for nonlinear propagation in ideal
afJuids consists of the above-mentioned PDE, which holds in

terms in Eq.(5) and the nonlinearity of the medium must be regions of continuous solutions. At discontinuities the model

included. These terms describe an avrnplitude—dependeﬁfst E{?} be supp_lerren'ief_l by the jump ctond|t|ohns._ T(? ensure
phase velocity of the wave. As described hyti®v,?® points at the numerical solution converges (o a physical one, a

in the wave profile with a large amplitude propagate falsternumerical viscosity term is appended to fulfill the entropy

than points with a low amplitude. In the spectral domain thiScondition. More details on the numerical implementation of

wave distortion can be described by a transfer of energy fronr'nhIS $xte||'1dedthmodel ?re g|\f/en in t_Sec. Hil. i ¢ stat
the fundamental frequency component to higher harmonics. 0 close the system of equations, an equation ol state

The pressure gradient at the front of the wave becomes mord_ P(p.s) has to be added, with being the entropy varia-

and more steep, leading to a high acoustic velocity gradienfIon due to diss!pative effects. The entropy vgriation term in
Because all real fluids show at least a low viscosity, this hig he state equation can be estimated. Assuming Mach num-

velocity gradient leads to strong local frictional forces. Fi- ersM<1 (M= |v|malco) for all therapeutic US fields, the

nally, a stable state, called shock, exists between the Cou|g_ntropy variations due to thermal conductivity of water and

teracting processes of nonlinear steepening and dissipatioﬂl.Je to the dissipative effects inside the shock front can be

Measurements by Eisenmenffedetermine the typical thick- "€9Iected. According to the theory of weak shocks, the dis-
ness of the shock front in water to be on the order szli?fztrlggc:as ;trotﬁgrté%r;ilkt(f)rggglvtgg|20;Vnera0f thg pr<ta_ssure
10 % m. : pproximation

The ideal nonlinear acoustic equatiass do not include valid up to the second order, the adiabatic state equation for

the shock formation and propagation correctly. In absence Ji;omogeneous media can be written as

the dissipative processes the gradient at the front becomes CS B ,

infinite and the description by the partial differential equation p=Cop+ a SAP (7)
(PDE) fails. To model especially the amplitude and the

propagation speed of shocks, the ideal fluid model has to bwherec, represents the sound speed d@Yd\ the acoustic

extended. nonlinearity parameter of the medium. In a linear approxi-
One approach explicitly includes the dissipative effectsmation of Eq.(7), one obtains
at the shock front. By this, the gradient in the front remains p=C§p. ®)

finite and the PDE description is therefore valid. A discrete
algorithm, like the FDTD, for a direct modeling of the dis- From the considerations above it follows, that the extended
sipative effects inside the small-sized shock front seemifleal fluid model, consisting of Eq¢5) and(7) in a second-
questionable because of the exhaustive computational cosgder approximation completed by the jump conditions and
involved. the entropy condition, is necessary and sufficient for the de-
In the following, the basic mathematical background isScription of therapeutic ultrasound propagation, including
explained for our new model that predicts accurately nonlin\Weak shocks. No complementary energy equation is needed.
ear steepening effects and the formation and propagation of
Wgak ghocks. If the exact curvature of the s_hock front is Oflll. NUMERICAL IMPLEMENTATION
minor interest compared to the correct amplitude and propa-
gation speed of the shock, another path can be taken: shocks For a numerical implementation, a two-dimensional ex-
are treated as discontinuities having an infinite gradientplicit FDTD algorithm is chosen to solve Eq$) and(7) in
Mathematically they could be regarded as weak solutions ofylindrical coordinates, assuming axisymmetry. The explicit
the PDE. To include such weak solutions in a correct manneFDTD algorithm is a simple, efficient, and flexible method to
one has to use the original integral equati¢hs Applied on  calculate US wave propagation including nonlinear steepen-
a discontinuity, these integral equations lead to jump condiing effects in complex geometries.
tions for the field quantities. Together with an energy equa-  The algorithm has to take into account the different pos-
tion, these are the so called Rankine—Hugoniot relationssible types of solutions of the problem. Over wide parts of
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the computational domain the solutions are expected to be- time /
have smoothly. Caused by the _nonl_inear steepenir_lg process, oY 4@4
weak shocks are generated mainly in the focal region, which

have to be taken into consideration, too. In order to include A /’3/ - /Q%Elﬁ?c o= >

this huge time scale “efficiently,” a two-stage strategy is = —
applied® To include weak shocks in a correct manner, a oo
numerical method in conservation form is derived in Sec. AtI

Il A, 2627which then is implemented by a dispersion relation
preserving(DRP) high-order finite-difference scherfefor _ o o
FIG. 2. The applied explicit, high-order FDTD scheme. For spatial differ-

an optimal treatment of broadband smooth solutions, pre- =" . . . o _
entiation a symmetric, seven-point stencipen circlegis used inr- andz-

sented in Sec. Il B. directions. Integration in timéopen squaréss over four time levels for the
new field value(black circle.

A. Numerical treatment of weak shocks Rankine—Hugoniot relation. The second and third equation
In order to guarantee a correct representation of weak!? the numerical conservation forrl0) approximate the
shock solutions with a numerical method based on Ioartiaﬂ:onservatlon of momentum flux in a linear order. Therefore,

differential equations, the conditions of the Lax—Wendroff € St of equation&0) provides a first-order approximation
theorer® must be fulfilled: A numerical method in conser- ©f the exact shock propagation speed, which is sufficient for

vation form guarantees that the solution converges to th8"0St Eraft;lfﬁll appht;atrl]ons. .

correct discontinuous weak solution, when reducing the step 1 he fulfillment of the Lax—Wendroff theorem ensures a
size towards zero, provided that the method is consistenfC/TeCt Propagation speed of a discontinuous weak solution
One way to derive a numerical method in conservation fom{ndependently of the discretization. To ensure the correct am-

is to use standard finite-difference discretization and star'P“t”deS' the discretization has to be chosen so that disconti-
with the conservative form of the PDE, not using EE) nuities are well resolved. However, this theorem does not

directly2528 With guarantee that the weak solution is a physical one. A numeri-
' cal, artificial viscosity term incorporated into E¢LO) en-

1 i _ P ) sures that the entropy behaves physically and increases over
(potp) pPo polpotp)’ the discontinuity?®
and the divergence operator in two-dimensional cylindrical } i} ) X
coordinates 1(,z), one obtains from Eq(5) the following w EJF E—Q— Iw - Iw (11
conservation law formulation: ot o oz aZ P2
ow  IF"  ogF*

with u as the artificial viscosity. Now, the basic formulation
of the PDE is prepared in such a manner that an FDTD
with implementation includes not only smooth but also discon-
tinuous solutions.

—t—+—=
ot ar 0z Q,

p(r,z,t)
w=| v.(r,zt) |,
v,(r,z,t)
B. Numerical treatment of acoustic solutions—the
(potp)v, (potp)v, applied FDTD scheme
F=| plpo |, F= 0 : (10)

0 / For an optimal treatment of nonlinear acoustic solutions,
Plpo an explicit high-order FDTD algorithm is chosen to imple-

(po+p)v, ment Eq.(11) numerically. The continuous differential op-
. erators are approximated by discrete difference operators
with equidistant spatial discretizatiokr = Az. The solution
_ P a_p_< i+ i) w;'; is calculated for each time stép=nAt in each discrete
Q= (po+p)po Ir Urar " Vzgz) Yt grid point (ri=iAr,z;=jAz). An explicit algorithm yields
p ap P 9 the solutionwﬁfl_qf the next time s_tep by integrating_ over
mﬁ_(vra_rﬂ)zﬁ v, calculated quantities from preceeding time levels. Figure 2

illustrates the applied FDTD scheme. To g\ﬁfl+l an
The temporal changes in the conservative quantiiesire = Adams—Bashforth method is used to integrate the temporal
caused by the sum of the spatial changes of the fleke®id  changes ofw; j(t). These temporal changes wof ;(t) are

FZ. The source vectd® contains the inhomogeneous part of approximated by a sum of the spatial derivatives of the flux
the PDEs, i.e., some nonlinear and geometrical terms, whichuantitiesF" andF?, the source term®, and the terms of the
cannot be included into the flux terms. The first equation inartificial viscosity. Here, this sum will be denoted Iaﬁj .

the set of equation&l0) represents a conservation equationFinally, the following FDTD implementation of Eq11) is

for the flux of mass and therefore leads to the correspondingbtained:
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r=3

Wlnrl%WInJ + AtrZO br E
= i

n—r

r=3

~w]j+At> bH (12)
’ r=0

ij
with
3 3
H-n'”—i 2 a, F" -—i Z a.F>" +Q_“_
L Ar p= g TPTIERIT Az ey TP RN

3 3

_ VS:2—3 CsWin+s’j— VS:E—3 CsWin’H_S, (13

whereb, are the coefficients for the numerical integration

sentation of the wave. Also, from E(l4) the maximal value

of the approximated normalized wave number can be calcu-
lated tok,,,AX=1.65, which indicates the maximal possible
wave numberk occurring in the numeric calculation. The
evaluation of Eq.(15) shows four different complex solu-
tions w; , 3 4fOr a given numericab. To avoid instabilities,

the imaginary parts of all possibleAt curves have to be
less than or equal to zef@mo unphysical amplificationand

SO wminAt<0.4 must be fulfilled.

The artificial numerical viscosity. = vAx? in the imple-
mentation of Eq(11) quadratically decreases towards zero as
Ax—0. So, the correct weak solution is guaranteed in the
limit of a vanishing cell size. The coefficients are deter-
mined in the frequency domain to approximate a spatial

'Gaussian low-pass filter. The low-frequency parts of the so-

a, are the coefficients for the numerical derivative of theIution remain undamped. Only waves wity,,Ax>1.17,

fluxesF, ¢ are to approximate the numerical artificial vis-

cosity terms, and finally= u/Ax? is the constant parameter

which do not propagate correctly across the numerical grid,
are selectively damped. Here=0.1 is used. To avoid ef-

of the artificial viscosity. The approximation of the spatial fects of signal distortion due to numerical dispersion, a sym-

derivatives is performed with a symmetric seven-point sten
cil, and for the temporal integration the last four time levels

are used. The coefficients, andb, are designed according
the DRP(dispersion relation preservingnethod®® The aim

metric difference scheme is used. The filter coefficients
are listed in the Appendix.

Besides the consistency of the numerical method, the
stability is important. Every explicit algorithm for hyperbolic

of this method is to preserve the dispersion relation of the,q,ations has to fulfill the Courant—Friedrichs—Levy stabil-
underlying PDE in its numerical representation. To get DRPy o ition, which couples the maximal allowed time step
optimized coefficients, andby , two different methods for 15 the spatial discretizatioff. The factory is called the Cou-

coefficient design, namely the method of the Taylor serieg, . nymper. For the DRP algorithm in two dimensions, one

expansion and the method of coefficient design in the fre-gets the following relation:

guency domain, are combined. So, the DRP method com-

bines the advantage of being consistenas—0 from the

Taylor method with the broadband approximation behavior

typical for the frequency domain method. The coefficidnts

anda, are listed in the Appendix. For a further description,

see Refs. 28 and 25.

wmipAt
(M +v2)Knad X

Assuming Mach number® smaller than 0.2 for all thera-
peutic applicationsy is required to be smaller than 0.149.

X
Co=7y—, Wwith < <1. 16)
0= 5 Y (

To study the numerical propagation behavior of the DRP
method, a plane-wave expansion of the discrete differentia€. Numerical treatment at the boundary

tion and integration operators in E¢L3) and Eq.(12) is
considered. With plane waves of the foriiV(x,t)
=Wel*=9 where W is the complex amplitudek the
wave numberw the angular frequency, andthe propaga-
tion direction, an approximated numerical wave nuniaex

A numerical model for the calculation of US propaga-
tion in therapy systems has to consider various conditions at
the boundary of the numerical grid. At the surface of the
transducer, the US signal is emitted. Here, a source condition
has to be implemented. The surrounding of the active area, as

relative to the spatial grid is obtained as a function of thethe mounting or the reflector, is most often made of metal

normalized physical wave numbkAx
p=3

kAx=—j > a,elPksx,
p=-3

(14

and for the normalized approximated angular frequency re

ferred to the temporal discretizatiomAt, as a function of
wAt

j(eTied-1)

wAt= =57 -
E;jgbrejrw,ﬁt

(15

Using the values of the coefficiengg andb, mentioned in
the Appendix, for a smaller maximum differend&Ax

like brass or aluminum. In an approximation, these bound-
aries can be regarded as ideally rigid: there is no normal
velocity component ,=0 and no normal pressure gradient
dp/dn=0 at the boundary. This condition is also applied to
model the boundary condition on the symmetry axis. If the
boundary doesn’'t behave ideally rigid or soft, impedance
boundary conditions are necessary. Finally, absorbing bound-
ary conditions are needed to limit the computational domain,
where no physical boundary exists.

For simplicity reasons, all considerations at the bound-
ary are made in a local coordinate systemand &, wherey
stands for the normal angifor the tangential direction at the
boundary. The transform of the locg)¢é system to the global

—KkmadX| of 0.005, a maximal normalized physical wave r,z system is executed by a rotation matrix.

number k,,,Ax is extracted from Eq(14). The value of

For the implementation of ideally rigitbr ideally sof}

KmaAX=1.17 also means that in theory 5.4 grid points perboundary conditions, the image method is applied. As shown
wavelength are sufficient for a correct discrete spatial reprein Fig. 3, the numerical grid is extended by three dummy
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computational domain :_\
n M3 Mo M; D1 D> D3
¢ Y boundary

)

3 .
FIG. 3. Implementation of ideally rigid and ideally soft boundary condi- & ot -
tions. The inner grid points (1,2,3,...) are expanded with three outer dummy™~
points(D,, D,, Ds), values of which are determined by the corresponding =

image pointsM;, M,, Mj).

points (index D). So, the full high-order symmetric FDTD
scheme is applicable throughout the whole computational _;, ; ;
domain. The quality of the numerical method remains the 120 130 140
same at the boundary as in the inner region. The values o
the field variables ¢,v ,,,v,) in the three dummy points can
be calculated from the interpolated values of the correspond-iG. 5. Comparison of the nonlineér-) and linear (- -) simulation results

time (ps)

ing image pointgindex M) by the following relation: with the analytical—) solution.
rigid:  (p,v,,vd)p=(p,—V,.Vem,
_ B (17) PTpPo  PTPo
soft: (p,v,,v)p=(=p,v,,Veu- Co Co 0

Reflector focusing transducers especially need accurate mod- S= 1 1 ol (20
eling of the curved rigid reflector boundary. There, the values

in the image points are calculated by a two-dimensional local 0 0 1
spline interpolation, as described in Refs. 25 and 29. In characteristic form, one finally obtains
The implementation of the impedance boundary condi- W ow
tion, the absorbing boundary condition, and the source con-  § !— +AS '—+S§'F,, =0, (21
dition is based on a characteristic form of E&). These ot on
conditions are expressed quite easily by separating incoming L

and outgoing wave®:*°~*To derive the boundary condi- where the diagonal matrixA =S"*AS=diag,+co v,
tions in characteristic form, the consideration starts with the-cy,v,) is composed by the eigenvalues/f The vectorl

quasilinear form of Eq(5) in local coordinates, Eq18) written in components gives
W W L=[byA;,b,A,,b3A5],
A+ Fyane=0, (18) e
Jt In 1lov, 1 co dp
with the vectow=(p,v,,,v,). The VectorFgscontains the b;=3 a2 (potp) dn’ (22)
transversal and geometrical terms of Es), which are not in
Aowl 3z, with Lty 1 c dp _ve

3y

v, (potp) O o _ _
Here, b; and b, are the acoustic incoming and outgoing

2
= o v, 0. (19  Wwaves, respectively which belong to the eigenvalwes

(potp) +¢o andv ,—Cg; bs describes the vorticity wave. The out-

0 0 v going waveb, is fully determined by the known values at

! the inner grid point. The incoming wau® has to be deter-

The linear pressure-to-density relationsipip-cgp is used mined to fulfill the boundary condition at the boundary. Fig-

here. For a characteristic formulation, E{.8) has to be
diagonalized. This can be done by the application of the
transformation matri>S on A. The matrixS consists of the
eigenvectors of the matrig

computational domain

f

FIG. 4. Boundary conditions in characteristic form. At the boundary the :
acoustic field is split into an incoming wavg and an outgoing wavb,,
which is calculated from inner grid points 1 and 2. FIG. 6. Geometry of the self-focusing piezoelectric transducer.
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ure 4 depicts the characteristic boundary treatment, which is

. . . . . FIG. 9. Power spectral densities of focal pressures normalized to the maxi-
applied only to the last grid point. The outgoing wavgis |, of th;"'”ne;r Calculaﬂor:.' pressu 'z X
calculated using one-sided differentiation stencils. In the

points 2 and 3 the normal conservation formulation is used
with symmetric stencils of reduced order. To incorporate the€lation at the boundarg,=p/v,, and using the linear state
boundary treatment into the regular integration algorithm, a§quaﬂ0nP=C(Z)P, one obtains

described above, the characteristic form is partially trans- 9z,

0 J
formed back to the quasilinear form E@3), but expressed cl P “n_p. (25)

in the wave components; ,

oW
— +SL+F_,,.=0.

(23
Jat

~——
Hrl

- __Z_
gt Unat P Tat

After substitution ofdp/dt and dv /4t in Eq. (25) with the
first and second component of E@3), one can solve the
equation forb, at the impedance boundary

i,j
So, only the calculation of the differentiated fllbti”J- is

changed, whereas the integration step remains the same
throughout the procedure.

e ((potp)Co—Zp)Asb,
LIMP= ((po+p)Cot Zp) Ay

aZ
At the absorbing boundary, no wave enters the compu- ZuF trans, 1+ Ftrans‘2+vﬂ—b
tational domain. This means that the time derivative of the _ o (26)
first equation in Eq.21) must be zero[S *ow/at],;=0. ((potp)CotZp)Ay

Solving the first equation in Eq21) for b,, one obtains At the physical existing source, the incoming wave

depends on the given source pressoy) and on the out-
going waveb,, which is reflected at the source boundary
according to the acoustic impedariggof the boundary ma-
terial. Hence b, s can be written as a superposition of an
incoming transparent source walg g yan(Ref. 30 and a
reflected waved iy,

b _ E (pot p)COFtrans,1+ Firans,2
1,abs 2 (Po+ P)CoAl
At an impedance boundary the reflected wdvede-

pends on the outgoing wau® and on the acoustic imped-
anceZ, at that boundary® Differentiating the impedance

(29)

(27)
The addendb, i, is given in Eq.(26). To obtainb; gc.yanthe
first component of Eq(21) is solved for the unknowb; .
After replacing the time derivatives @fandv ,, by the cor-
responding source quantitiegpg/dt= (1/cS)(9ps/ﬁt and
dvglat=*1/(copy) Ips/dt, one gets

bl,src: bl,src-tran+ b1,imp-
80

b _ 1 CO (?ps 1 avs
Lsretran- — 5 (pot+p)Ay ot 2A4 ot

pressure (MPa)

_ E CO(p0+p)Ftrans,1+ Ftrans,z
2 Co(potp)A1

(28)

IV. VERIFICATION

The verification of the nonlinear US propagation model
is performed by comparison of the numerical calculations
with an analytical one-dimensional solution and with mea-
FIG. 8. Comparison of nonlinear calculatédL), linear calculatedLIN), surements in two different focu'smg Fransduce'rs_ As a first
and measureM) pressure pulses in the acoustic focus of the seh‘—focusingpr_acnca_I e_xamp_le, a self-focusing piezoelectric transducer
transduce(Fig. 6). (Fig. 6) is investigated. In a second example, a reflector fo-

40
time (us)
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FIG. 10. Comparison of nonlinear calculatédL ), linear calculatedLIN) FIG. 11. Comparison of nonlinear calculatédL ), linear calculatedLIN),
and measure(M) axial distribution of the maximal pressure amplitudes for and measureM) lateral distribution of the maximal pressure amplitudes in
the self-focusing transducéFig. 6). the focal plane for the self-focusing transdu¢€ig. 6).

cusing electromagnetic transdu¢€ig. 12 is validated. The ) .
measurements are performed in degassed water with a fibdf: filléd with degassed water at a temperatureTef20 °C

_ _ _ 37
optical probe hydrophori¥, which is an accepted measure- (Po=998 kg/n?, co=1482 m/s,B/A=4.9)>" The measured

ment device for shock wave measurements in lithotripsy. inriltial prelszsure; signal at the surface of the transducer is
shown in Fig. 7.

A. Comparison with analytical solution qu different ca_llculations are performed. For the first
calculation the nonlinea(NL) numerical model, Eqs(12)
Blackstock’s one-dimensional analytical result for a cy-gn (13), are used, with a spatial discretization Afx
lindrically diverging sinusoidal wave of finite amplitutfes =50 um and a Courant number=0.125. For comparison a
applied to demonstrate the correct nonlinear propagation be&pecond calculatiofiLIN) is performed in the same arrange-
havior of the presented numerical model. The analytical soment, neglecting the nonlinear terms in the acoustic vari-
lution provides a first-order approximation of the exactaples. Here, no steepening occurs and therefore a discretiza-
shock-propagation speed. The comparison is performed withgn Ax=75 um is sufficient. The calculation of the
a 100-kHz sine wave, radiated from an infinite cylinder with ngonlinear problem using an HP C3000 requires 320 MB of
a radius ofro=4cm into a lossless fluid with the acoustic RaM and a computational time of about 25 h.
properties of water atT=22°C (co=1487 m/s, B/A Figure 8 shows the comparison between the measured
:49) .37 At the Cylinder’s surface the radial Component of (M) and the Ca|cu|ated\”_, L|N) preSSure_time waveforms
the velocity isv,(ro) =21.67 m/s(corresponding to a shock i the acoustic focus. The result of the NL calculation fol-
distance of 10 ci To limit the computational domain, sym- |ows the measured waveform closely, whereas the linear cal-
metric and absorbing boundary conditions are implementedyation severely underestimates the measured maximal am-
as described in Sec. lll. The wave profiles at20 cm of the  pjitude and overestimates the maximal negative pressure. In
analytical, the nonlinear numericakith Ax=50 um), and  Fig. 9 the power spectral densiti@SD) of the linear(LIN)
the linear numerica(with Ax=300 um) results are shown and nonlinearNL) calculated signals of Fig. 8 are shown,
in Fig. 5. The comparison with the linear result shows anygrmalized to the maximum value of the linear one. The
anomalous dissipation in the analytical as well as in the nugjfferences demonstrate the shift from lower to higher fre-
merical solution. The excellent agreements of the zeros ev ency components due to nonlinear effects. In Fig. 10 the
in the shock locations demonstrate a correct reproduction fﬂ.i;tribution of the maximal pressure amplitudes onzfeis
the shock speed in a first-order approximation. is presented and Fig. 11 shows the maximal pressure ampli-
tudes in their lateral distribution in the focal plane. The
therapeutically important features, namely the maximal and
the minimal pressure amplitudes, the nonlinear steepened
Figure 6 shows the arrangement of the self-focusingshock front or the—6-dB area of the focal zone, are espe-
transducer. The transducer has a focal distance of 55 mm amdhlly well matched. This comparison clearly points out that

B. Measurements and calculations in the self-focusing
transducer

TABLE I. Quantitative comparison of the measured and predicted field parameters for the self focusing trans-
ducer(Fig. 6).

Calculation
Meas. Nonlinear Linear
Pmax (MPa) 68.1 70.6 (+3.6%) 41.5 39.0%)
Pmin (MPa) —-19.2 —-21.6 (—12.5%) —-27.1 (—41.1%)
trwnm (1S 0.186 0.199 +7.0%) 0.501 (+169.3%)
—6dB inz (mm) 4.66 4.49 3.7%) 9.19 +97.2%)
—6dBinr (mm) 1.15 1.28 +11.3%) 2.78 (-141.7%)
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FIG. 12. Geometry of the reflector focusing electromagnetic transducer. The . . . .
curvature of the paraboloid reflector is given iig) = —2.785¢—0.122¢  COsts. For more details on this adaptive zooming see Refs. 25

+0.0898. and 39. The calculations are performed using the nonlinear
model Egs.(12) and(13), with high diligence to the FDTD
nonlinear steepening effects are important in therapeutic USnplementation of the curved boundary at the brass reflector.
devices. From Figs. 10 and 11 one can deduce the spatial In Figs. 14 and 15 the measuréM) and calculated
region, where this nonlinear effects drastically alter the prestNL) pressure—time waveforms are compared. Figure 14
sure distribution. Table | quantitatively summarizes the charshows the pressure—time waveforms in the acoustic focus
acteristic parameters of the pressure distribution for the selfand Fig. 15 those in the focal plane 14 mm off axis. Both
focusing transducer. diagrams demonstrate an excellent agreement of the pre-
dicted pressure—time curves with the measured ones, regard-
ing the shock front, the maximal pressure amplitude in the

C. Measurements and calculations in the reflector focus, and the waveform of the signal off-axis.

focusing transducer

In contrast to methods based on a parabolic approximay coNCLUSION
tion of the nonlinear wave equations like the KZK equation, ) ) )
the numerical model presented here is also applicable to cal- Nonlinear models are required to calculate therapeuti-
culate nonlinear wave propagation in reflector focusingC@lly applied ultrasound. Linear US propagation models un-
transducers. Figure 12 shows the electromagnetic reflectglerestimate not only the maximal pressure amplitudes in the
focusing transducer investigated here. The initial pressurfocus but also the pressure rise at the front of the wave.
signal is generated by a cylindrical electromagnetic sotfrce. COMparisons to measurements clearly demonstrate that the
Figure 13 depicts the measured pressure pulse at the radigenlinear FDTD model is able to predict the pressure distri-
ing area. The initial cylindrical wave is transformed by the bution in different therapeutic ultrasound transducgrs very
parabolic brass reflector into a converging spherical wave. accurately. The advantage of the presented model lies in the

Measurements are performed with a fiber-optic hydro_combln_atlorj of_ different aspects: first, a nonllnea_r acoustic
phone in degassed water at a temperatur&e22 °C. For approxmqtlon in c_onse_rvanon form of the full nonlinear hy-
the simulations following material paramet¥rdor water ~ drodynamic equations is used to include weak shocks. Sec-
po=998 kg/n?, c,=1487 m/s,B/A=4.9 are used as before. ond,_the hlgh_-order FDTI_D algorithm combined with _th_e dis-
Based on a spatial-temporal transformation of the equation®ersion relation preservingDRP) method for coefficient
the discretization of the computational domain is adaptively
refined as the spherical pressure wave converges to the focus.
Hence, the FDTD algorithm always resolves the developing
weak shock very well with minimal additional numerical

pressure (MPa)

93 98 103 108

0 5 10 15 20 time (us)
time (us)

FIG. 15. Comparison of nonlinear calculatédl ) and measure@M) pres-
FIG. 13. Measured initial pressure signal for the reflector focusing transsure pulses in the focal planerat 14 mm off axis of the reflector focusing
ducer(Fig. 12. transducefFig. 12.
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determination provides an optimal numerical treatment of
smooth acoustic solutions. And finally, the specially adapted
high-order implementation of the ideal reflecting boundary
conditions completes the model.

Between the simulation and experimental results an
agreement of about 10% is observed. Therefore, it can be
concluded that the presented method provides field predic-
tions with high accuracy. It can be used to investigate the

c3=—0.014281184692¢c_3,
c,= +0.086 150 669 57%C_,,

(A3)
c,=—0.235718815308¢c_,

Co=+0.327 698 660 846.

behavior of new therapeutic devices or to optimize existing ;M- Delius, “Lithotripsy,” Ultrasound Med. Biol.26(1), 55-58(2000.

therapy systems. Beside a reduction in development time and

W. Siebert and M. BuchExtracorporeal Shock Waves in Orthopaedics

(Springer, Berlin, 1998

costs, it enables a deeper insight into the field characteristicsc. . Chaussy and S. Thuff, “High-intensity focused ultrasound in lo-

that point-by-point measurements can provide.

calized prostate cancer,” J. EndouriB}(3), 293-299(2000.

An extension for US fields in attenuating tissue Iayers, 4G. R. ter Haar, “Intervention and therapy,” Ultrasound Med. Bi6(1),

51-54(2000.

which typlcallly show atte.nuatlon according to a frequengy 5S. Vaezy, R. Martin, B. Goldman, E. Chi, W. Chandler, P. Kaczkowski,
power law, will be the topic of a subsequent paper. With this and L. Crum, “Biological mechanisms of acoustically-induced hemosta-
extension, studies of complex effects like the enhanced ab-sis,” in IEEE Ultrasonics Symposium Proceedings, Caesars Tahoe, Ne-

sorption due to the counteracting processes of nonlineag

vada, Vol. 2, pp. 1401-1404, 1999.
. P. Kuznetsov, “Equations of nonlinear acoustics,” Sov. Phys. Acoust.

steepening and frequency-dependent tissue absorption argga) ae7-470(1971.
possible. Also, further investigations on the development and’ Nonlinear Acousticsedited by M. F. Hamilton and D. T. Blacksto¢kca-
influence of the tissue temperature on the US propagationdemic, London, 1998 Chaps. 3, 4, 11.

will be possible. Such considerations are important in HIF

U 8]. M. Hallaj and R. O. Cleveland, “FDTD simulation of finite-amplitude

pressure and temperature fields for biomedical ultrasound,” J. Acoust.

treatment of biological tissues, where in vivo measurements o am. 105, L7 (1999.

are still a very difficult task.
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Directional dependence of nonlinear surface acoustic waves
in the (001) plane of cubic crystals
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Spectral evolution equations are used to perform analytical and numerical studies of nonlinear
surface acoustic waves in tl{@01) plane of a variety of nonpiezoelectric cubic crystals. The basic
theory underlying the model equations is outlined, and quasilinear solutions of the equations are
presented. Expressions are also developed for a characteristic length scale for nonlinear distortion
and a nonlinearity coefficient. A time-domain equation corresponding to the spectral equations is
derived. Numerical calculations based on measured second- and third-order elastic constants taken
from the literature are performed to predict the evolution of initially monofrequency surface waves.
Nonlinearity matrix elements that indicate the coupling strength of harmonic interactions are shown
to provide a useful tool for characterizing waveform distortion. The formation of compression or
rarefaction shocks can be strongly dependent on the direction of propagation, and harmonic
generation is suppressed or increased in certain direction0@ Acoustical Society of America.

[DOI: 10.1121/1.1455023

PACS numbers: 43.25.Fe, 43.25.D&ANN]

I. INTRODUCTION isotropic media. Researchers first began to develop theories

Unlike the theory for nonlinear Rayleigh waves in iso- tc; prgdlct thtelpr'or;;lgatlpdnltgggonlllarlle;; SA\le Ig nor?plezo-
tropic media, the theory for nonlinear surface acoustic wave§ €Ctric crystals in the mid- s. Plandeveloped a theory

(SAWS) in crystalline media predicts a wide diversity of ef- 10" @n elastic solid with general anisotropy based on a mul-
fects that depend on the elastic and symmetry parameters BPI€ Scales approach but presented results for only a limited
the materials, orientation of the surface cut with respect tglumber of harmonics. Another multiple scales theory with
the crystalline axes, and direction of propagation. Simulageneral anisotropy by Lardrfewas employed by Lardner
tions based on numerical solution of spectral evolution equa@nd Tupholméto investigate the properties of nonlinear sur-
tions introduced by Hamilton, IIinskii, and Zabolotskdya face waves in cubic crystals, but the reported results were
are presented for eight different crystélCl, NaCl, Srk, limited to propagation along a crystalline axis in a plane of
BaF,, Si, Ge, Ni, Cy over a full range of propagation direc- symmetry. Results were provided as tables of coefficients
tions in the (001) surface cut(results for additional cubic describing the growth and decay rates of the fundamental,
crystalline materials and symmetries are presentedecond, and third harmonics for 35 cubic crystals or crystal-
elsewher®. The nonlinearity matrix used to describe har- line alloys, as well as for the first three harmonic propagation
monic interactions generally has complex-valued elementsurves for the specific case of magnesium oxide. Indepen-
with nonuniform phase for an arbitrary surface cut. Howeverdently, Parket developed a theory for nonpiezoelectric, an-
because of the symmetries in tt@01) surface cut of cubic jsotropic media that avoids some of the complications and
crystals, the nonlinearity matrix for this plane can always bejmijtations of the multiple scales approach by introducing a
writtgn in a reall-valued form, §imilar to that 'for the case of eference frame moving at the linear wave speed to derive
nonlinear Rayleigh waves. While the qualitative nature of thespectral evolution equations. Results were given only in

waveform distortion of surface waves in t@01) plane is  orms of waveforms for an isotropic solidithough numeri-

similar to that of nonlinear Rayleigh waves in some CaseSg,) reqits were later presented for a piezoelectric chfstal

the simulations show that the distortion may depend strongly During the mid-1990s, Hamiltot al*1* extended the

on the direction c_)f propaggtlon_. For example, .Compress'qulsotroplc theory of Zabolotskaya for nonlinear Rayleigh
shocks may form in some directions but rarefaction shocks in 213, : . : . .

" . . L waves?to include nonpiezoelectric, anisotropic media and
others. In addition, there exist particular directions where the

distortion differs completely from nonlinear Rayleigh waves presented results for potassium chioride in selected propaga-

because of suppression or enhancement of generation of 0H8n directions. Piezoelectric effects were subsequently in-

or more harmonics. Measurements in crystalline silicon cor-Cluded in this theory” Gusevet al.” also developed a theory

roborate several of the predicted resdlts. for nonlinear SAWSs in anisotropic media, but numerical cal-

While extensive work has been performed to investigat&“laﬂons demonstrating their results have not been reported.
nonlinear surface wavé€ most of it has been limited to T_helr evolution equations are given in the tlmeldomam and
differ from those of Parkérand Hamiltonet al! Further
) ) discussion of the approach used by Guseal'® is provided
dCurrent address: National Institute of Standards and Technology, 32

16
Broadway, Mail Stop 853, Boulder, CO 80305-3328. Electronic mail:%y Meegarnet al. ) ) )
kumon@mailaps.org In recent experiments, very-high-amplitude SAWSs
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ty proach which is convenient for describing the surface bound-
ary conditions. The nonlinearity matrix is given by
Vacuum 3 E
$15253

Sm= X (4)

S1,S2,83=1 Igsl+ mgsz_(l +m) :3’

+Z

Crystal
where
_ (s1) p(S2)r p(S3) (sp)y(s2)p(s3)
Fssys,= %di’jklmnIBi VBB, T T, (B)
-y
diikimn=ijkimn 7 Cijin Skm Cjnki Sim* CjimnJik » (6)

19=(1,0£5), andcij andd;jximn are the second-and third-
order elastic constants transformed to the chosen reference

-Z : . . .
frame. (Elastic constants are typically listed with respect to
the coordinate system defined by the crystalline axes.

The following source conditions are assumedcat0:

FIG. 1. Coordinate system for plane surface wave propagation. Note thatthe v{=vg, Up=1=0, (7

positive z axis points out of the crystal. . L .
whereuv is taken to be a real-valued characteristic ampli-

tude. Substitution of Eq<7) into (1) and(2) yields the fol-

strains up to 0.0Llhave been generated photoelastically in, . .
( P L 9 P Y lowing source velocity components at the surface:

fused quartZ/~*° polycrystalline aluminum and copp#t,
and crystalline silicot?! via pulsed laser excitation. Calcu- v{(0,01)=2v,|B;| cof wt— ¢;), (8)
lations based on the theories of ZabolotsKéyar isotropic
media and Hamiltoret al for crystals agree well with the
measured resulfs?>2

where
3

Bj:|Bj|e'¢J=Z1 B 9)
II. NONLINEAR THEORY .
Note that only the relative phases Bf are determined by
the theory—the absolute phases may be chosen as is conve-
A plane surface wave is assumed to propagate inxthe nient. While all simulations considered in this paper are for a
direction in an anisotropic half-spaee=0 (see Fig. 1L The sinusoidal source, any source spectrum can be employed via

velocity components of the surface wave are taken to havEourier decomposition. For the simulations shown here, the

A. Model equations

the form absolute phases are chosen such Bhalies along the nega-
w tive imaginary axis. In the limit of an isotropic solid we may
v(X,2,7)= E Un(x)unj(z)efinwr_'_ c.c., (1) choosev,=0, and Eqs(8) reduce to
- v4(0,01) = —2v|B4|sinwt,
wherej=X,y,z is the coordinate indexy is the fundamental (10)
angular frequency in the expansians t—x/c is the retarded v4(0,01) =2v|B|coswt.

time, andc is the linear wave speed in the direction of propa-
gation. The depth dependence is given by the functions  B. Second harmonic and nonlinearity coefficient

3 _ To gain insight into the nature of the lowest-order har-
unj(z)zz B}S)e'”"gsz, (2)  monic generation, consider Eq®) with « in the second
s=1 summation replaced by 2:
where ¢ and ,8]-(5) are computed from the eigenvalues and d d
. . . Uq %) ZSllw 2
eigenvectors, respectively, of the linear boundary value prob- X +av,=0, ax + ayu,=—7 v, (12)
lem corresponding to the stress-free surfdcandk= w/c is X X pc
the fundamental wave number. The coupled spectral evoluand the corresponding solutions satisfying E@s-
tion equations for the slowly varying amplitudeg(x) are

, 28,003 [ @7 20X — g~ @2
given byt Dy=vge M, py= 0( — (12)
) n—1 pC ar,—2a,
dv, nN“w )
WJranvn:ﬁ 2 Smn—mVmVn—m Note that S;; is generally complex-valued, and thus
pE Am=1 S11/|S11| = €11 with 0<1;<27. In the limit of no absorp-
% tion Eqgs.(12) reduce to
_2 ok B *7 , 3
m=§n:+1sn’m nfmtm-n @ v1lvo=1, v,lvo=(2S10v2 pchx. (13)
where«,, is the absorption coefficient for theth harmonic, The similarity of Eqs(13) with the corresponding solu-

p is the density, an&,, is the nonlinearity matrix. Equations tions for sound waves in lossless fluids makes it possible to
(3) are written in terms of Lagrangian coordinates, an ap{propose an estimate of the shock formation distancexLet
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be the shock formation distance for a finite-amplitude sound v C 9 T2 ’

wave radiated at angular frequeneyand velocity amplitude X T2 as J LTIZL(% =1, 7= 17")

vo in a lossless fluid. The quasilinear solution for the second

harmonic component 8 |v,|/vy=x/2X; . Comparison with Xvi(x,7)vj(x,7") dr’ d7", (18

Egs.(13) shows that an estimate of the shock formation dis- )
tancex, for the SAW is thus where T=27/w and C=—1/2pc?|B;|. The kernel of the

integral is
e (14

X0=1a 1, ’ ! —ilwr’ g—imw7”

O 4]S,|wv, L(gj,7 ,H)I% Pim(#)Qim(#))Sme 1“7 ™™ 7
which depends on the third-order elastic constants via the (19
nonlinearity matrix elemens, ;. where

Equation(14) can be somewhat problematic when ap- _ .
plied to crystalline media. Harmonic generation may occur ~ Pim( ;) =i(I+m)e'¢isot+m, (209

while shock formation does not, and therefore the character- i i
istic distance given by Eq14) loses meaning in those cases. Qim( ;)= —sgr(im)e 1 Sanleid sonm, (20D

For examplé, near the(100 direction in the(001) cut of  As mentioned in Sec. Il A, linear theory determines only the
KCI, the transfer of energy from the fundamental to higherrelative phases of th;. Without loss of generality, choose
harmonics is so weak that shocks never fofsee Sec. the absolute phase of one velocity componept(i.e., sefj
B3). _Despite the fact that Eq414) i§ not applicaple in all equal to a specific index we shall calf) to be a negative
cases, it does provide at least a first-order estimate of the,,4inary number so that the result corresponds to the phase
shock formation distance in many cases of interest and cafynvention used previously in the theory for isotropic

still be useful in this respect. o o medial? Under this condition, the kernel can be shéwao
An expression for a nonlinearity coefficient similar to roquce to

that of fluids may also be derived. For a finite-amplitude
wave radiated at angular frequeneyand velocity amplitude . v o —imes"
v propagating in such a medium, the shock formation dis- L(¢jo_ w2, '7J)—|Zm I+m[Sme e .

tancex; is related® to the coefficient of nonlinearit; by (21)
Xt=¢?/|B¢|vow. From Eq.(14), a comparable SAW nonlin-

carity coefficient is Other velocity componentdor which j # k) may be ob-

tained from integral transforms of the(x,7) component.
B=—4S,,/pc?. (15) From Eqgs.(17), it follows that thenth spectral amplitudes of

the jth andkth velocity components are related by
In general, B8 is complex-valued, although cases do exist

where it is strictly real-valued. The negative sign is intro- ) (Bi/Bj)unj(x) for n>0, (i#K). (22
duced in Eq(15) so that the sign of the nonlinearity coeffi- nk (BX /B )vnj(x) for n<o0, J '
C|ent. |§6con3|stent with the corresponding theory for 'SOtrOp'CEquations(ZZ) imply that the velocity waveform components
media: . S
in the x; andx, directions are related by
Uk(X,T):Rqu/Bj)UJ'(X,T)—|m(Bk/Bj)H[Ul‘(X,T)], (23)
C. Time-domain evolution equation where

As for isotropic solids? a time-domain equation for the 1 o f(1)
evolution of nonlinear SAWs on the surface of crystats ( H[f(7)]= —Prf —d7’ (29
=0) may be derived from the frequency-domain evolution T JoeT T
equations, Egs(3), without the absorption term. Equations gefines the Hilbert transform, and Pr indicates the Cauchy
(3) may be rewritten with the summation on the right sideyincipal value of the integral.
performed over all indices, both positive and negative:

dv, n’w Im
dx - _2p04|+;=n im] SmV1Vm- (160 1. NUMERICAL RESULTS

From Egs.(1) atz=0 we have The focus of this article is the propagation of nonlinear
surface waves in cubic crystals. Cubic crystals are chosen not
s because of any limitation of the underlying the¢Bgs.(1)—
UJ(X’T):; vnj(x)e ’ (17 (6) apply for arbitrary anisotrofly but because they exhibit
the simplest types of fully three-dimensional anisotropy, and
wherevnjzvn(x)|B,-|ei‘/’J 9" The spectral component with there is considerable experimental data available for their
n=0 is zero because the bulk of the solid is assumed to be ahaterial properties, especially higher-order elastic constants.
rest. Following the approach for isotropic mefifdt can be  Eight nonpiezoelectric crystals were chosen for study to pro-
shown that vide a variety of anisotropy ratios.
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1.0 from a review article by Hearmot!.The direction of propa-
KCI N=0.373—__ gation is measured by angle from (100, and the wave
speed for each material is scaled &= (C,4/p)*? for that
% material. For the(001) surface cutc, is also the speed of
SiFyp 1-0803—" :ir:)en;aisnt ':rr]?;sverse bulk wave, which is constant for all Qirec-
plane. Because the normal to {B81) plane is
BaF, T]=1.02/ a fourfold symmetry axis, the SAW speed is periodic every
09 - J A#=90°. In addition, thg110 direction is a twofold sym-
metry axis, and therefore the SAW speed is symmetric about
that direction(#=45° in Fig. 2. In most casesand for all
Si M=1.57 cases shown heréhe speeds group by anisotropy ratio, with
materials possessing lower anisotropy ratios having higher
relative SAW speeds. Materials with=1 are nearly isotro-
pic and hence have nearly constant SAW speed for all direc-
tions.

For all materials, the directiof=0° is a pure mode, and
the particle trajectories are confined to the sagittal plane.
Some materials have additional pure modes in other direc-
tions, but in these cases the SAW often has a transverse
component(e.g., Ni, Cu, Si, Gg In some materials, the
SAW speed approaches the transverse bulk wave speed as
the direction approaches=45°24 This effect is the source of
the dip in the SAW speeds of Ni, Cu, Si, and Ge observed in
Fig. 2. The SAW becomes a shear horizontal bulk wave at
6=45°, and the degeneracy gives rise to a pseudosurface
wave mode in the same direction. Because the nonlinear
theory described above does not apply to pseudosurface
waves, modes propagating in these directions are not consid-
ered further.

All of the aforementioned effects pertain to linear
SAWSs; they are mentioned here primarily to provide a con-
text for the nonlinear effects discussed next.

Ge n=1.66

clc ref

Ni M=2.60

| | 1 1 1 1 |

0 10 20 30 40
0 [deg] B. Nonlinear effects
FIG. 2. Dependence of SAW speed on direction of propagation i0Hd It is convenient to introduce the dimensionless quantities
plane for selected materials. The SAW speed of each material is measured
relative toc,_ef=(c44/p)1’2, and the angle) gives th(_e directiqn of the wave V= Un/UO: X:X/XOu Ap=apXg, (26)
vector relative to(001). Because of the symmetries of this cut, the wave . o . .
speeds are symmetric abof45° and periodic every §=90°. wherev, is a characteristic velocity of the SAW ang is
given by Eq.(14). Equation(3) becomes
A. Linear effects dv, AV n? ( nEl SRy
.. . . nvn— n—m n—m
The variation of the linear wave speed as a function of dX 8|311|

angle may be characterized by the anisotropy fatio

2Ces -2 2 Shm-nVmVin- ) (27)

(25) m=n+1

T Cu—Ci) . . . .
12 whereN is the number of harmonics retained in the calcula-

where cgg=C,4, for cubic symmetry. This definition is con- tion. The boundary conditions corresponding to Ef).are
structed such thay=1 for an isotropic material. The SAW Viel V...=0 (28)
. . . 1 n>1

speeds for many materials group conveniently by anisotropy
ratio. A larger anisotropy ratio implies a slower SAW speedlt also proves useful to define the dimensionless nonlinearity
relative to the fast transverse bulk wave speed. Because 6fatrix
this grouping, selected materials can be shown to be charac- -
teristic of many other§? Sim= = Sim/Cas- (29

Figure 2 shows the SAW speed of selected materials as&he negative sign is introduced to be consistent in sign with
function of propagation direction. These curves were comihe nonlinearity matrix element®y,, used for nonlinear Ray-
puted using density data from review articles by Rieal?®  leigh waves™ In all cases, the figures throughout this article
and Eckerlinet al,?® and second-order elastic constant datareport matrix elements defined by E(R9). Because the
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0.01 0.08 rectionsf#=0° to #=45°. While plotting only three elements
KCl n=0.373

-0.06 of the nonlinearity matrix certainly does not provide a full
0 0.04 description of the nonlinear properties of the SAW, it can
' give a good idea of the evolution in many cases, as shown
-0.01 0.02 later. Moreover, the leading order terms in perturbation solu-
0 tions for second, third, and fourth harmonic generation are
0.02 - R 0.02 proportional toS,;, S;,, andS, 3, respectively.
E— Four groups of crystals are shown in Fig. 3, with two
0.08 0.08 different materials of similar structure in each group. The
0.06 006 L materials are ordered by increasing anisotropy ratio from top
' ' to bottom within each columirecall Fig. 3. The densities
0.04 0.04 and second-order elastic constants used to construct Fig. 3
0.02 0.02 are the same as in Fig. 2, and the third-order elastic constants
0 0 are listed in Table $2-3¢
0.02 |- ] 02 The first column of Fig. 3 shows the nonlinearity matrix

elements for materials withy less than or approximately
equal to unity: KCI, NaCl, Srf, Bak, (=0.373, 0.705,
0.803, 1.02, respectively The second column shows the
nonlinearity matrix elements for materials with greater

§Im

0.1

-

0.01 |-SrF, n=0.803

0.05 than unity: Si, Ge, Ni, Clinp=1.57, 1.66, 2.60, 3.20, respec-

0 —";‘;‘/‘;’//'"'x ,,,,,,,,,,,,,,, tively). Note that ath=45°, where the SAW and shear modes
g” - 0 converge|S,,|—0 in these materials. Si and KCl are chosen

§‘2 for investigation in detail in Secs. IlIB 2 and 11l B 3, respec-
20.01 L P8 905 tively, because they provide examples of the different kinds
0 0.1 of waveform distortion exhibited by nonlinear SAWs in the

BaF, n=1.02 ' (001 plane.
002k .- =71 0.5

2. Detailed study of silicon

Figure 4 (expanded from Fig. 3shows the plot 0,
for Si divided into three regions. The small circles on the

-0.04 / 0
curves correspond to the anglés-0°, 26°, and 35° dis-

-0.06 L1 1 171 005 S cussed in detail below. In region0°< #<20.89 the nonlin-

0 10 20 30 40 0 10 20 30 40 earity is negative $,,,<0). As is shown below, this means
0 [deg] 0 [deq] - - . )
that positive segments of the longitudinal particle velocity
FIG. 3. Dependence of nonlinearity matrix elements on direction of propa—Waveform steep_en backward In space, and negative segm_ents
gation in the(001) plane in selected materials. The solid, long-dashed, andSt€epen forwardi.e., opposite to what a sound wave does in
short-dashed lines correspond3g, S,,, andS,s, respectively. a fluid). In region Il (20.8°<#<32.39 the nonlinearity is
positive (§,,>0), with waveform distortion the reverse of
(001) surface is a plane of mirror symmetry, the nonlinearitythe first region. In region 11[32.3°<#<45°) the nonlinearity
matrix coefficients are all real-valued. is again negative, although relatively weak. Observe that the
linear wave speed varies by approximately 28¢e Fig. 2
over the angular range shown, whereas the changes in the
) ) ) ) nonlinearity matrix elements are of order unity. Hence not
Figure 3 shows plots of the nonlmearl'Ey matrix eIeAmentsOI,“y do the nonlinear matrix elements change igith dis-
for a variety of crystals. Each graph plo8; (solid), S;, tinctly different waveform evolution as a resylbut they
(long-dashel] and S;5 (short-dashedover the range of di- also vary more widely in magnitude.

1. General study

TABLE I. Third-order elasticd TOE) constants for selected nonpiezoelectric crystals. The constants are given
relative to the reference frame defined by the crystalline axes in Voigt's notation with units of GPa.

Material digq dig dios digs diss dise Source

KCI —726 —24 +11 +23 —26 +16 Drabbleet al. (Ref. 32
NacCl —843 —-50 +46 +29 —-60 +26 Drabbleet al. (Ref. 32
Srk, —-821 —309 —181 —-95.1 —-175 —42.1 Alterovitzet al. (Ref. 33
Bak, —584 —-299 —-206 —121 —88.9 —27.1 Gerlich(Ref. 39

Si —-825 —-451 —64 +12 —-310 —64 McSkiminet al. (Ref. 35
Ge -710 —389 —18 -23 —292 —53 McSkiminet al. (Ref. 35
Ni —2032 —-1043 —-220 -—138 —910 +70 Salameet al. (Ref. 39
Cu —1390 —778 —181 —140 —648 —-16 Salameet al. (Ref. 39
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0.08 T T I T than the shock formation distance. The effect of the absorp-

: : tion is then weak in comparison to that of the nonlinearity,

; ' and its primary influence is on the rise time of the shock.

0.06 N Once the spectra were generated, the waveforms were recon-
: : structed using Eq(1).

Figure 5 displays the simulation results for one direction
in each region of Fig. 3. Each row shows waveform evolu-
tion in the direction specified by the angle listed in that row.
The columns from left to right give the longitudinal, trans-
verse, and vertical components of the velocity, respectively.
In each direction, the waveforms are normalized such that
[Vy2+|V,|?+|V,|?°=1 at X=0, and hence the magnitudes
for different directions should not be compared. Each graph
of the velocity components contains waveforms Xat 0
(short-dashed X=1 (long-dashef] andX=2 (solid) in the
retarded time frame, i.e., a frame moving at the linear SAW
speed.

0=0°: This direction is in region | of Fig. 4, where the

nonlinearity elementsS;;, Sy, and Sy; are negative. As

o ) A A s o mentioned previously, the longitudinal velocity waveform
FIG. 4. Nonlinearity matrix elements;;, S;,, S;3for Si in the(001) plane hibits di . ith th K di d th h
as a function of direction. Because of the symmetries of this cut, the matriX€X1! 'ts_ 'Stort'on_w't the peak receding anc the tr'OUg
elements are symmetric abofit=45° and periodic evenA #=90°. The  advancing, opposite to that of a sound wave in a fluid. In
circled directions are discussed in detail in the text. addition, the longitudinal waveform exhibits the cusping
near the shock front that is characteristic of SAWSs. The ver-

Observe that the weakening in the third region is coin-tical velocity waveform also exhibits the cusped peak seen in
cident with the gradual convergence of the SAW mode andRayleigh waves. In fact, SAWSs in this direction are consid-
transverse bulk mode into a shear horizontal bulk wave, asred to be “Rayleigh-type” waves, as defined by Farr&ll,
seen from the wave speed plot in Fig. 2. Additionalfor the following three reasons. First, due to the symmetries
calculationd indicate that an increasing amount of energyin this direction,B,=0, and the motion is thus confined to
moves away from the surface and into the bulk of the solicthe sagittal plane. Second, this is a pure mode directix:.
as theg=45° direction is approached. As a result, it becomegerimentally, pure mode directions are often preferred over
increasingly difficult to create the surface amplitudes necesether directions because it is typically easier to make mea-
sary to observe nonlinear effects in this SAW mo(khere  surements when the power flow is in the same direction as
does, however, exist a pseudosurface wave mode at a highgfe wave vectoy. Third, the principal axis of the surface
wave speed; and it is this mode which is often excited particle trajectory is perpendicular to the free surface due to
experimentally in this regiop. i the 90° phase difference betweBn and B;. Thus, except

Finally, Fig. 4 indicates thaB,;, S;,, and S;3 pass for the fact that the amplitudes of the particle velocities do
through zero nea#=20.8° and#=32.3°. Additional calcula- not decay purely exponentially into the solid, propagation in
tions show that while all matrix elements do not go throughthis direction is quite similar to the propagation of nonlinear
zero at the same angle, all significant elements are close Rayleigh waves in isotropic materials with negative nonlin-
zero at these angles. Hence propagation is expected to lé%rity coefficientse.g., fused quart?).
nearly linear in both these directions even for finite- 9=26°: This direction is in region Il of Fig. 4, and it is

amplitude waves. Because harmonic generation is SURne only direction in this region where there is a pure mode.

g%sesz(ijét::gggs do not form, or they form only over VeV | &, andS,; are positive, and the longitudinal velocity

To investigate the effects of the sign and magnitude 0]waveform exhibits distortion with the peak of the wave ad-

S, on the velocity waveforms, simulations were performedvancmg and the trough receding, opposite that in region I.
m ’ A ingly, th ical velocity f kin th
by solving the system given by Eqe27) for the monofre- ccordingly, the vertical velocity forms a cusped peak in the

- . ) . positive direction. Note that the horizontal scale has been
quency source condition given in Eq8). The equations ; .

. . . shifted over by rad in these waveforms, as compared to the
were integrated numerically using a fourth-order Runge—e_oo case
Kutta routine withN=200 harmonicgi.e., 1<n<N, with B s _ .
V_,=V¥*). The nondimensional distande=x/x,=1 corre- ~_  0=35% Here, a.nd throgghout region Il of Fig. .311’
sponds to approximately one shock formation distance. Th&12, andS;z are again negative, and the waveform distorts as
absorption coefficients were chosen by assuming classicét the #=0° case.(Note that the horizontal scale has been
absorption due to viscosity and heat conduction, for whictshifted over by— rad, as compared to th#=26° case, so
the quadratic frequency dependensg=n?A; is obtained. as to be the same as in tde-0° case. This direction is not
The absorption for the fundamental was selected tApbe a pure mode, but it is the direction where the nonlinearity has

= a1Xp=0.025 to make the absorption length much largerthe largest magnitude in this region. Even so, the magnitude

0.04

0.02

0 10 20 26 30 35 40
0 [deq]
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FIG. 5. Velocity waveforms in selected directions of propagation in(6@) plane of Si. The velocity components are normalized such that the initial
amplitude satisfiep/,|>+|V,|?+|V,|*=1 in each propagation direction. The short-dashed, long-dashed, and solid lines correspond to propagation at distances
X=0, X=1, andX=2, respectively.

of the nonlinearity is significantly weaker here thargato°, from (100 increase&ASlZ passes through zero around

with S$15(35%)/5,,(0°)=0.14. $=3.2°, and then finallyS,; passes through zero around
The simulations for Si presented above demonstrate both)_g 5o 1o propagation a#=5.2° is similar to that for

that the SAW nonlinearity varies significantly in magnitude #=20.8° andf#=32.3° in Si, i.e., little harmonic generation

and direction throughout th@021) cut, and that the nonlin- At les. th trix el Bis S d
earity matrix elements provide a map which can characteriz@°CUrs: arger angles, the matrix elemesis, Sz, an

the nature of the waveform distortion. Additional types of Sis @ré negative although, unlike Si, here the magnitude of
waveform distortion not exhibited in Si are shown in Sec.Sy; is less than the magnitudes 8f, and S;3. Also unlike
B 3. Si, the SAW modes do not converge with the transverse bulk
mode at#=45°. Finally, here the percentage variation in the
nonlinearity matrix elements as a function of angle again
exceeds the corresponding variations in wave sgeeth-
The nonlinearity matrix element$;;, S;,, andS;; for  pare with Fig. 2.
KCI are shown in Fig. 6 over the range 08<10° (ex- Figure 7 shows three additional types of velocity wave-
panded in part from Fig.)3The small circles on the curves form distortion. Figure 7 has the same format as Fig. 5 ex-
correspond to the angleg=0°, 3.2°, and 10°, which are cept that the third and fourth columns show, respectively, the
discussed in detail later in this work. As compared to thespectra at the locations corresponding to the waveforms, and
nonlinearity matrix elements for Si, the matrix elements forthe harmonic propagation curves for the first five harmonics.
KCl are quantitatively and qualitatively different. A4=0°,  Also, theV, waveforms are omitted because they are either
S,; andS;, are positive whileS3 is negative. As the angle zero or similar to the/, waveforms.

3. Detailed study of potassium chloride
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0.01 6=0°: In this direction,S;; and S,, are positive, and
S5~ —7.0x107* is negative but close to zero and smaller
than S;; and S, in magnitude [S,4/|S;4=0.14,
15,4751, =0.42). The matrix elemer8, indicates the cou-
pling strength between the fundamental and third harmonic
to generate the fourth harmonic. Energy that is transferred to
the third harmonic from lower harmonics is therefore not as
easily transferred to the fourth harmonic. The third harmonic
(short-dashed curve exceeds the second harmoflieng-
dashegl in amplitude aroundX=3, while the fourth har-
monic grows more slowly initially. Another consequence of a
small value ofS; is that shock formation does not occur. For
example, while the longitudinal waveform is distorting in a
.. “positive” way, with peaks advancing and troughs receding,
' it has not yet formed a shock. Moreover, as seen in the fre-
-0.01 L L1 ' L guency spectrum, relatively little energy is transferred to the
0 2 324 6 8 10 higher spectral components as the wave propagategrast
0 [deg] with the spectrum in th&=10° direction). Additional calcu-
lations indicate that at distanc&s>2 the longitudinal veloc-
FIG. 6. Nonlinearity matrix elementS,;, S;,, S;5 for KCI in the (001) Ity. W.aveform stegpeps more b.Ut never forms a Sh.OCk' Hence
plane as a function of direction. Becaluls‘e o?‘,theasymmetries of this cut, théhIS IS anmhe_r d|re_ct|on at which shock su.ppressmn O.CCUI:S'
In contrast with Si, however, the harmonic suppression is

matrix elements are symmetric abof##45° and periodic every 90°. The
circled directions are discussed in detail in the text. less severe and occurs for a harmonic higher than the second.

Spectrum [dB] Harmonic Propagation

6=0° 6=0°

1 1
50 100 150 8 10
8=32° .. 8=32°
ol 05 [/
) i3 I . “\\
\|" ,II
l L 0 | T T T .
50 100 150 0 2 4 6 8 10
1
0=10° 6= 10°
05 +

1 1

0
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n X

FIG. 7. Velocity waveforms in selected directions of propagation in (8@l plane of KCI. The velocity components are normalized such that initial
amplitude satisfiedV,|2+|V,|?+|V,|2=1 in each propagation direction. In the velocity and spectrum plots, the short-dashed, long-dashed, and solid lines
correspond to propagation at distanees 0, X=1, andX=2, respectively. The harmonic propagation curves plot the spectral ampliM¢getsolid), |V,

(long-dashey |V3|, (short-dashed |V,| (dotted, and|Vs| (dot-dasheflas a function of distance.
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i is i irecti [ - 0.01
Finally, this is a pure mode direction, and it may be ame Srabblo and Strathen
nable to measurement. Chang ------

6=3.2°: HereS, ; is positive,S;,~ —4x 108 is close to
zero, andS;; is negative. In additiorS;, is much smaller
thanS,; in magnitude [S,,]/|S;4=1.5x10"%). The matrix RN
elementS,, indicates the coupling strength between the fun-
damental and second harmonic associated with generation ¢

the third harmonic. The result of the small valueff‘qu is c
highly efficient energy transfer from the fundamental to the @
second harmonitbecause the transfer from the second to the
third harmonic is impeded which in turn causes rapidly
depleting energy from the fundamentake the Appendix of

Ref. 1 for additional discussignThe inefficient transfer of
energy out of the lowest harmonics leads to other unusual g2
phenomena, including the amplitude of the third harmonic
(short-dashedexceeding the fundamental past 5, and the
suppression of fourth harmonidotted around the same lo- 0 10 20 30 40

cation. The complicated interaction of the lowest harmonics 6 [deg]

IS also_r?ﬂeCted in the spectra, which ?Xhlblt_ many max'm%m. 8. Comparison of selected nonlinearity matrix elements calculated
and minima and also show that relatively little energy iSfrom third-order elastic constant data of Drabble and StratRef. 32 and
transferred to the higher spectral components. The waveshang(Ref. 37 for propagation in thg001) plane of KCl. Second-order
forms do not exhibit shock formation but do show some¢€lastic constant data are taken from HearrtiRaf. 30 in both cases.

higher frequency oscillations due to the atypical energy

transfer. Additional calculations show that at distanees (di11, di22, d129) Were computed by assuming the Cauchy
>2 the waveform does not form a shock, and the highefelations dixg=dsse=di4s and djj,=diee. In contrast,
frequency oscillations grow in extent and magnitude. In sumDPrabble and Strathen measured all six constants and showed
mary, the simulations identify thé=3.2° direction as an- that not all the Cauchy relations halsee Table)l (Although
other direction of shock suppression, although with a still"0t shown here, a similar comparidomas performed for the

different character than both of those described for Si or for>! case described in Sec. IllB2. The general trends remain
the 6=0° case in KCI. the same although the exact amplitude and zero crossings

9=10°" Hereéll, élz, andém are negative but, unlike qhange by a_small amoupiThe lesson here is that the non-
. S oA linearity matrix elements, and therefore the waveform distor-

for #=0° and §=35° in Si, here the [nagnjtudé;lﬂ IS 18SS  tion. can be rather sensitive to changes in the third-order

than neighboring elementge.g., [Sy4|/|S;]=0.84 and elastic constants. Therefore care should be exercised in mak-

|S,4]/|51=0.68. This inversion in the magnitudes of the ing detailed predictions at specific directions without accu-

matrix elements causes energy to be transferred to the higheate third-order elastic constants.

harmonics more efficiently. In turn, this increased rate of

energy transfer results in significantly sharper cusping in thév. SUMMARY

waveforms. The harmonic propagation curves also show a This article has investigated the properties of nonlinear

steeper .decline ip the amplitude of .the funQamgntal and &AWs in the (001) plane of selected crystals. Si and KCI
steeper increase in the other harmonics. All directions¥0° \yara chosen for detailed study. It is found that the nature of
<45° show this same type of distortion. _ the nonlinearity is often very sensitive to changes in direc-
Before concluding this section, comments are in ordetjon and the relative variations can be larger than those oc-
regarding the dependence of the aforementioned results Qfrring in the linear wave speed. For most cases, plotting the
the choice of third-order elastic constant data. To evaluatg,st few nonlinearity matrix elements as a function of direc-
the effects of using the same second-order elastic constantg, can provide a guide to the nature of the nonlinear ef-
but different thiArd-orAder eIasAtic constants, the nonlinearitysects, While particular directions of high symmetry exhibit
matrix elementsS;, S;,, andS;; corresponding to the data harmonic generation and waveform distortion similar to Ray-
of Drabble and Strathéf (used in the KCI simulations leigh waves, several other effects have been identified. These
aboveé are plotted together with those of Chdhin Fig. 8.  include the existence of regions of positive and negative non-
Both sets show the same general trend, but the locations dihearity within the same cut, several varieties of shock sup-
the zero crossings occur for slightly smaller valuesfdh  pression where the generation of particular harmonics is sup-
the Chang data. Because Hamiltenal! used the Chang pressed and shock formation does not occur, and directions
data to perform their simulations for KClI, their paper showsin which harmonic generation is increased and energy is
the kind of waveform distortion seen f&#=3.2° in this ar- more efficiently transferred from the fundamental to higher
ticle at #=0°. An examination of Chang’s paper shows thatharmonics. As a result of the last two effects, the simple
only three of the six TOE constants were determined experiestimate of the shock formation given by Ed4) may not
mentally d144, dyis55, dasg) While the other elastic constants be valid or accurate in some regions. The choice of different
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Energy: Converting from acoustic to biological resource units
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Acoustic backscattering strength is often used as an index of biomass; however, the relationship
between these variables has not been directly validated. Relationships were investigated between
acoustic cross section at 200 kHz, measured as part of a previous study, and measured values of
length, biovolume, dry weight, ash-free dry weight, and caloric content of the same individual
specimens. Animals were part of the Hawaiian mesopelagic boundary community and included
shrimps, squids, and myctophid fishes. The strong relationships found between all the variables
measured make it possible to approximate any one variable from the measured values of others
within a class of animals. The data show that for these midwater animals, acoustic scattering can be
used as an index of biomass. Dorsal-aspect acoustic cross section at 200 kHz predicted dry weight
and ash-free dry weight at least as well as did body length, a standard predictor. Dorsal-aspect
acoustic cross section at 200 kHz was also a strong predictor of total caloric content. The
relationship between dorsal-aspect acoustic cross section and caloric content of Hawaiian
mesopelagic animals was linear and additive. Consequently, it is possible to directly convert
acoustic energy from these animals to organic resource units without having knowledge of the size
distribution of the populations being studied. 02 Acoustical Society of America.

[DOI: 10.1121/1.1470505

PACS numbers: 43.30.Sf, 43.20.FnLB]

I. INTRODUCTION cal samples of the population surveyed hydroacoustically are
The goal of the maiority of population and communit not available, volume backscattering is often used as a direct
9 jortty of pop Y index of biomasgLiao et al, 1999. However, studies di-

surveys has been to assess biomass and its distribution. Bio- o . .
. . . : . rectly validating the assumption that backscatter is an appro-
mass is measured in many ways: wet weight, dry weight

ash-free dry weight, biovolume, chlorophyl for primary priate measure of biological energy are rare.

i : . Ideally, we would like to assess biomass through a direct
production, protein for secondary production, carbon, ATP, . . . 4
. . : conversion of acoustic energy to units of organic energy
and energy contenfcalories. In every case, biomass is a

. . without an intermediate step. The goal of this work was to
measure of organic resources or available energy. Acoustl- . . .
. . : . X : assess the relationship between acoustic energy, measured as
cians and fisheries biologists attempt to assess biomass . : ;

. . . . art of a previous study, and various measures of biomass
acoustically, some using acoustic volume backscattering gs

. : . : ken on the same individuals, including biovolume, dry
an index of biomass and sometimes attempting to convert . ) . 4
) o . weight, ash-free dry weight, and caloric energy content. This
acoustic units into measures of biomass more palatable to the . . .
) . - . was an attempt to directly validate the use of acoustic back-
biologists who use this information. .
scatter as a measure of biomass. We also attempted to deter-

Converting acoustic measurements into biomass esti-. . . . . .
. . : ine if acoustic scattering can be directly converted to bio-
mates requires samples of the population being measured

X . mass without knowledge of the size distribution of the
(Clgytoret a!., 1999' To estimate biomass, standard Iength_population being surveyed, at least for animals from the Ha-
weight relationshipgkemper and Raat, 1997or the taxa waiian mesopelagic boundary community—a near-shore
involved are often applied to the acoustic estimates of abuns- attering layer community of small fish, shrimp, and squid
dance obtained. The biological samples taken therefore ne?‘ieidet al, 1997, This is a biological perépective ,on ASSESS-
to represent the length distribution and taxonomic composi: N i

) : : : : ing biomass for this noncommercial animal community
tion of the population examined in the acoustic sur(gg- rather than a more traditional fisheries acoustics perspective
thke et al, 1994. This requires that the collecting gear be Persp )

. . . . . Ultimately, the units obtained are the same as those estimated
unbiased in capturing the objects in the volume of water,

: : in many fisheries acoustics studies; however, our method of
sampled(Bethkeet al, 1994. Such nonselective collection converting between acoustic measures and biomass is novel
is difficult, if not impossible(Parkinsonet al, 1994. The 9

problems associated with converting acoustic energy tgnd more direct.

abundance estimates have been amply discussed

MacLennan and Simmonds, 199Zhese problems can only

be further compounded by using average length—weight rdl- METHODS

lationships that are often plagued by collection biases, lim- Trawling for micronektonic animals was conducted us-
ited data, and spatial and seasonal variations. When biologjr-1g| a 2-m opening Isaacs—Kidd midwater tra{MT ) dur-
ing two cruises in May and July of 2000 aboard the NOAA
dElectronic mail: benoit@hawaii.edu ship TOWNSEND CROMWELL. The trawl was towed obliquely
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FIG. 1. The relationship between fish standard length, shrimp total length, i
squid mantle length, and animal target strengédrawn from Benoit-Bird
and Au, 2001

for 20 to 30 min, reaching a maximum depth of 200 m. The —
ship was traveling between 3 and 4 knots with wire sent outg gt.her myctophids
. iaphus spp.

at 25 m per min. The dorsal-aspect target strengths at 20(e gensmosema fibulatum
kHz, shown in Fig. 1, of the various live animals from the
mesopelagic boundary community were measured as part o
a previous studyBenoit-Bird and Au, 2001 The standard FiG. 2. Matrix of regressions for standardized measures of biomass, fish
length of fish(the distance between the tip of the snout andstandard length, and the square root of dorsal-aspect acoustic cross section
the rear end of the caudal pedur)clkhe mantle length of the (o) of myctophid fish. All possible combinations are shown with each vari-

. . . __able as both the andy axis.
dorsal side of the squids, and the total length of the fish,

squid, and shrimp species were measured with vernier cali-

pers to the nearest 1 mm. Animals were then identified t&he sample plus filter weight, and the percent of the sample
species and frozen for later analysis., that remained after ashing was calculated.

After returning to the laboratory, the displacement vol- To examine the relationships between the variables mea-

ume to the nearest 0.5 ml of eacr; individual animal Wassured, each was standardized into a one-dimensional vari-

measured in a graduated cylinder of appropriate size for th ble. Acoustic cross section is closely related to the square of
the mesopelagic animal’s lengtBenoit-Bird and Au, 200}

individual. Animals were then homogenized in a smallth f h ¢ of i " d
blender with distilled water added to facilitate even mixing. eretore, the square root of acoustic Cross section was use

Homogenized samples were freeze-dried to remove all watJPr_ comparison between variables. Because the shapes of
without allowing the loss of volatile substancéBaine, animals change roug_hly the same as Iengt_h, the cube root of
1971. Dry weight of the entire sample was then measure(POth volume and weight was taken. Calorie content, gener-

: . ly, has between a square and a cubic relationship with ani-
d th | further h d tar arfy : :
Sgstlee sample was further homogenized Using a mortar a mal length(Golley, 1961; Slobodkin and Richman, 196To

Two 10-20-mg subsamples of each fully homogenizeoqetermine which exponent was more appropriate, the rela-

animal were compressed into pellet form with a Parr pellei'onSh'ps of the square root and cube root of caloric content

press. Calorie values of the two subsamples were determin tﬁr each group against length were tested. Length predicted

using a Kipp and Zonen BD40 Gentry microbomb oxygent e square root of _calories better than the cube root of calo-
calorimeter attached to a chart recorder, using standard met es in all three animal groups, so the square root was used
ods (Paine, 1966 The samples were run in random order or comparisons.
along with three 10—-20-mg benzoic acid standards. If twoIII RESULTS
subsamples disagreed by more than 3%, a third sample was
run. There was strong colinearity between standardized mea-
The percent of ash of each animal was also determinedures of dorsal-aspect acoustic cross sed@nvolume, dry
Glass filters were heated to 500 °Cr f6 h to remove any weight, ash-free dry weight, length, and calories for myc-
biological residues, cooled in a dessicator, and then weighedophid fishegFig. 2), mesopelagic shrimp$-ig. 3), and me-
Two freeze-dried subsamples of each animal were weighesopelagic squidsFig. 4). Plots of linear, pairwise relation-
and placed on these preweighed glass filters in aluminum fohips of all these standardized variables, except ash-free dry
dishes. The samples were then heated for 4 hours at 500 °@gight, are found in the matrices of these three figures. For
cooled in a dessicator, and the sample and filter were@xample, looking at the box labeled “Volume,” the graph
weighed. The weight of the filter was then subtracted fromabove this box shows the cube root of volume onxlexis
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FIG. 4. Matrix of regressions for standardized measures of biomass, squid
mantle length, and the square root of dorsal-aspect acoustic cross section of
FIG. 3. Matrix of regressions for standardized measures of biomass, shrimmesopelagic squids. All possible combinations are shown with each variable
total length, and the square root of dorsal-aspect acoustic cross section a both thex andy axis.

mesopelagic shrimps. All possible combinations are shown with each vari-

able as both the& andy axis.

content is shown in Table Il. A blocked linear regression
and the square root af on they axis. The graph to the left gpows that for myctophid fish, dorsal-aspect acoustic cross
of the “Volume” box shows the square root of on thex  gection at 200 kHz is not a significantly different predictor of
axis and the cube root of volume on thexis. The extreme 546 content than body length or volume. In shrimp, both
lower Ieft graph of each matrix §hows the square root_ of length and volume are significantly better predictors of calo-
the x axis and length on thg axis and so on. These figures rie content than the dorsal-aspect acoustic cross section. For

show the linear relationship of the paired variables, not their ~ . . . .
P P ' squid, dorsal-aspect acoustic cross section at 200 kHz is a

specific values. Acoustic cross section at 200 kHz was a

significant predictor of the measures of biomass taltan- Zlg;lflrantlyr/] betterI predictor ol1; chalone contentf than qther
dardized volume, dry weight, ash-free dry weight, and calo- ody length or volume. For all three groups of organisms,

ries for all three groups anfl tests showed that the slopes of dry Weight and ash-free dry weight are nearly perfect predic-
all regressions were significatifable ). tors of calorie contentr?=0.98,r?=0.97 overall. Conse-

Total calorie content is arguably the most biologically duently, both are significantly better predictors of calorie
important measure of biomass used here. The relationshig@ntent than dorsal-aspect acoustic cross section at 200 kHz
between dorsal-aspect acoustic cross section and calories dfell three groups. Dorsal-aspect acoustic cross section pre-
shown in Figs. 5, 6, and 7. A comparison of standardizedlicts dry weight and ash-free dry weight significantly better
dorsal-aspect acoustic cross section with length, and staithan it predicts total calories for shrimp, but it is not signifi-
dardized biomass measurémlume, dry weight, and ash- cantly different in predicting both weight measures and ca-
free dry weight as independent predictors of total calorie loric content in myctophid fishes and squids.

TABLE |. Results of regression analyses between dorsal-aspect acoustic cross section and various measures of
biomass, all standardized to be one-dimensional.

Acoustic cross-sectiono()~1/2

Independent
Dependent Volume'1/3 Dry weight1/3 Ash-free dry wt1/3 Calorie$1/2

r2 P r2 P r2 P r? P
Myctophids 0.80 <0.0001 0.83 <0.0001 0.83 <0.0001 0.82 <0.0001
Shrimp 0.67 <0.001 0.89 <0.0001 0.85 <0.0001 0.76  <0.001
Squid 0.89 <0.0001 0.89 <0.0001 0.89 <0.0001 0.89 <0.0001
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FIG. 5. Regression between dorsal-aspect acoustic cross section and 105 7. Regression between dorsal-aspect acoustic cross section and total
caloric content for myctophid fishémcludes all specimens caloric content for mesopelagic squidcludes all specimens

Energy density (calories per gram of ash-free dry N .
weight, an important measure of food quality that allows age target strength at 200 kHz had significantly higher en-

comparison between animal groups, is summarized in Tablg"?Y density than animals with higher than average target
[l for the midwater animals measured. The distribution Ofstrength at 200 kHzTable IV).

energy density values for myctophids was skewed towards

lower values. The distribution of shrimp energy density was

bimodal, with modes above and below the mean energy dertY- DISCUSSION AND CONCLUSIONS

sity. The distribution of squid energy density approximated a 11,4 strong relationship between acoustic scattering

normal distribution. strength and biomass measures should perhaps not be sur-

The correlation between caloric content and dorsaly,sing Much has been written in the acoustic literature on

aspect acoustic cross section at 200 kHz, despite large diffefre  rejationship between animal length and scattering
ences caloric density, suggests that energy density and aCoUgrangth (see, for example, Love, 19%0In the biological
tic scattering may be related. To examine this relationshipyterapre, animal length is routinely related to biomass mea-
the energy density of animals Wllth target stren'gths h'ghegures(see, for example, Sarvaket al, 1999. Both of the
than the average for the taxonomic group to which they bege|innships are strong and show the same directional trend.

long was compared with the energy density of animals with,nsequently, the relationship between acoustic scattering
lower than average target strengths. Average was defined a8y piomass should also be strong

the target strength predicted by the regression of length ver- A .0 istic scattering strength was an equally good predic-

sus target strength at 200 kHz for an animal belonging to thgfy, ot standardized measures of volume, dry weight, ash-free
taxonomic groupgBenoit-Bird and Au, 200 The individu- 4y \yeight, and total caloric value for myctophid fish and
als in the two groups were spread randomly throughout thg iy For shrimps, acoustic scattering predicted standard-
size range measured. A two-tallgedest wllthout assuming j;ed dry weight and ash-free dry weight equally well, and
equal variances revealed that animals with lower than avelsiandardized volume and calories equally well, but the
weight measures were predicted significantly better than the

SHRIMP volume or caloric content. The small sample size for both the

2500
shrimp and squid makes it difficult to interpret the meaning
of this difference. Perhaps the chitinous exoskeleton of the
2000 shrimp, which made the percent of ash higher than in the
other two groups, is responsible for the poorer fit of the
? 1500 caloric data in this group. Also, the low scattering strength of
o the shrimp compared with the fishes and squids means that
S the range of values of acoustic scattering is small compared
1000 . . . :
with the range of values for fish and squid. This would make
an existing relationship more difficult to detect, particularly
500 72 =0.69, P<0.001 with a _small sample §ize. For myctophid fishes however, the
Cals = 4x107 5 + 659.46 predictive relationships were especially strong for caloric
0 v v " content, the appropriate measure of biomass for the purposes
0 5 10 15 20 25 30 35 40

Dorsal-aspect acoustic cross-section (¢ x 10° m?)

of a field study. Predictions based on dorsal-aspect acoustic
backscattering, for myctophid fish and midwater squid, are at

FIG. 6. Regression between dorsal-aspect acoustic cross section and tol§@St &s good as those based on length or volume, which are
caloric content for mesopelagic shriniipcludes all specimens
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standard biological predictors of biomass. These data suggest
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TABLE Il. Results of regression analyses between one-dimensional biological and acoustic measures of individual animals and caloric content.

Independent Dry weight 1/3
Dependent Length Volum&/3 Calories1/2 Ash-free dry wil/3 (0)"1/2

r? P r2 P r? P r? P r2 P
Myctophids 0.80 <0.0001 0.81 <0.0001 0.97 <0.0001 0.96 <0.0001 0.82 <0.0001
Shrimp 0.88 <0.0001 0.79 <0.0001 0.90 <0.0001 0.87 <0.0001 0.76 <0.001
Squid 0.84 <0.0001 0.79 <0.0001 0.99 <0.0001 0.99 <0.0001 0.89 <0.0001

that the use of acoustics for studying biomass is warrantethat in these midwater animals, acoustic scattering measure-
and merits further work to validate the generality of the re-ments can be used as a direct index of biomass in monospe-
lationship. cific aggregations or when the proportion of each group
Mesopelagic boundary animals from all three taxa withwithin the survey area is known. Such estimation is com-
higher than average target strengths have lower energy demonly done(Liao et al, 1999 but the relationship of scat-
sities than those with lower than average target strengths &tring to biomass has not been directly validated. Second, the
200 kHz. Although proximate analysis was not conducted onelationship between dorsal-aspect acoustic cross section and
the animals in this study, other studies have shown a positivealoric content of Hawaiian mesopelagic animals is linear
correlation between lipid content and caloric dengBon-  and additive(Foote, 1983 Consequently, in the Hawaiian
nelly et al, 1993; Donnellyet al,, 1990; lkeda, 1996; Stick- mesopelagic boundary layer where the size range of animals
ney and Torres, 1989This suggests that an increase in thepresent is very narrow, it is possible to directly convert
proportion of lipid may be responsible for reducing the scat-acoustic energy to organic resource units without having
tering strength of individuals from the boundary layer with knowledge of the size distribution of the population being
high caloric density. This is likely because the density ofstudied. However, it is necessary to know the proportion of
marine lipids, while variable, is closer to the density of watereach biological grougmyctophid fish, shrimp, and squid
than other body component®onnelly et al,, 1990; Neigh- because myctophid fish have higher scattering values than
bors and Nafpaktitis, 1982; Ohshined al, 1987; Stickney equivalently sized squid and shrin{Benoit-Bird and Au,
and Torres, 1989 potentially making the impedance match 2001, while equivalently sized animals have similar caloric
closer, reducing the target strength. This relationship likelwalues.
will not be extendable to taxa that have air-filled cavities. Our results suggest that acoustic scattering can provide a
The presence of an air-filled cavity can increase the acoustigseful measure of biomass for these midwater species and
cross section of similarly sized animals by orders of magnican be converted to biologically relevant units without inter-
tude(Medwin and Clay, 19917 The myctophid fish measured mediate steps. However, we have no evidence that such es-
often had wax-invested or fully deflated swimbladders thatimates can be extrapolated to other species in other areas.
did not significantly affect their backscattering strengthThe process of directly measuring energy density is very
(Benoit-Bird and Au, 2001l The shrimp and squid also time consuming, but the measurement of dry weight is rela-
lacked air-filled cavities. tively simple. Individual animals need not be homogenized
This study may be the first to compare paired measurebefore drying if calorimetric analysis is not to be conducted.
of acoustic backscatter cross section and measures of bidhe only equipment necessary is a freeze-dfgéo known
mass. Interestingly, the strong linear relationships betweeas a lyophilizer and an accurate balance appropriate to the
one-dimensional versions of all the variables measured—size of the sample. Biovolume is an even simpler measure-
length, volume, dry weight, ash-free dry weight, calories,ment to take, requiring only a graduated cylinder and water.
and dorsal-aspect acoustic cross section at 200 kHz—mak#&/e suggest that measures of biomass should become a rou-
it possible to estimate any one of these variables from théine part of studies measuring acoustic scattering under con-
others, within a taxonomic group. Biologists conductingtrolled conditions. These types of paired measurements
biomass analyses have long reported data derived fromwould prove useful for field studies and models of ecosys-
length—weight curves, weight—calorie curves, and length-tems. Such measurement of biomass has been relegated by
calorie curves(Cummins and Wuycheck, 19Y.7Acousti- most acousticians to biologists. However, measuring acoustic
cians doing fisheries work have applied these curves, primaackscatter may be much more difficult for biologists than
rily those relating length and weight, to their data to estimataneasuring biomass is for acousticians. It is crucial that ac-
biomasgBethkeet al,, 1994. However, the results from this ousticians participate in obtaining the important paired mea-
study provide additional capabilities. First, these data shoveurements of acoustic backscattering and biomass for other
species.
TABLE IIl. Summary of energy density, calories per gram of ash-free dry
weight, for the midwater animals measured. TABLE IV. Two-tailed t test for equality of energy density means for me-

sopelagic animals that have lower than average target strength and those that
n  Minimum Maximum Mean Std. deviation  have higher than average target strength.

Myctophids 54 3721 9071 5309 909 T df P (2-tailed  Mean difference  Std. error difference
Shrimp 12 3823 5785 4836 569
Squid 8 4492 4949 4712 153 2.0 70.2 <0.05 373.4 187.0
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Nonlinear two-dimensional model for thermoacoustic engines
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A two-dimensional model and efficient solution algorithm are developed for studying nonlinear
effects in thermoacoustic engines. There is no restriction on the length or location of the stack, and
the cross-sectional area of the resonator may vary with position along its axis. Reduced model
equations are obtained by ordering spatial derivatives in terms of rapid variations across the pores
in the stack, versus slow variations along the resonator axis. High efficiency is achieved with the
solution algorithm because the stability condition for numerical integration of the model equations
is connected with resonator length rather than pore diameter. Computation time is reduced
accordingly, by several orders of magnitude, without sacrificing spatial resolution. The solution
algorithm is described in detail, and the results are verified by comparison with established linear
theory. Two examples of nonlinear effects are investigated briefly, the onset of instability through to
saturation and steady state, and nonlinear waveform distortion as a function of resonator shape.
© 2002 Acoustical Society of AmericaDOI: 10.1121/1.1467675

PACS numbers: 43.35.Ud, 43.25.3fWS]

I. INTRODUCTION sociated with acoustic wavelength rather than thermal pen-
etration depth, and computation time is thus reduced by sev-
A variety of nonlinear acoustical effects is readily ob- eral orders of magnitude.
served in thermoacoustic engineé.While various analyti- The model is developed for a 2D rectangular geometry
cal models are availabié (see also other investigations cited that is periodic transverse to the axis of the resonator. It is
in these papejsthey are based on substantial approxima-assumed that the plates in the stack have negligible thick-
tions and the solutions are often unwieldy. An accurate deness, but there is no restriction on the length or location of
scription that accounts for the combined effects of nonlinearthe stack. The computation region is thereby reduced to a
ity, viscosity, heat conduction, and multidimensional flow rectangular channel the length of the resonator and half the
thus calls for numerical solution of the equations of motion.width of a single pore. Resonators with varying cross sec-
Previous numerical investigatiofis that account for two- tions are described in curvilinear coordinates that transform
dimensional motion rely on computations performed only inthe boundary conditions and model equations into forms
the neighborhood of the stack. Moreover, they are based onearly identical to those for constant cross section.
the assumption that the stack is short compared with the The model equations are obtained in Sec. II, the solution
length of the resonator. algorithm is presented in Sec. lll, and the extension to reso-
The greatest impediment to direct numerical simulationnators with varying cross sections is discussed in Sec. IV.
has been the computation time required for adequate resolThe validity of the approach is demonstrated in Sec. V via
tion of the field throughout the resonator. The difficulty re- comparison with the linear theory developed by Eo#nd
sults from the widely different length scales encountered irswift.!* Two simulations emphasizing nonlinear phenomena
thermoacoustic engines. The large dimension is the length efre presented in Sec. VI. In one, the onset of instability
the resonator, which is comparable to the acoustic wavethrough to saturation and steady state is described. In the
length at the fundamental natural frequency. The small diother, nonlinear waveform distortion associated with differ-
mension is the diameter of the pores in the stack, which ignt resonator shapes is shown, and a simple physical expla-
comparable to the thermal penetration depth. These twaation is provided.
lengths can differ by several orders of magnitude. For ad-  The main purpose of the present article is to develop the
equate resolution of the field structure within the pores, stamodel equations and describe the solution algorithm. More
bility conditions require time steps so small compared to thesxtensive investigations of nonlinear effects in thermoacous-
period of acoustic oscillation that the computation time istic engines are postponed to later publications. An oral pre-
prohibitive. sentation of this work was given in April 2001 at the
One solution is to develop a theoretical model that per-st International Workshop on Thermoacoustics in
mits the stability condition to be decoupled from the small’s-Hertogenbosch, The Netherlands.
spatial scale determined by the pores. We obtain such a
model by ordgrmg spatial de_r|vat|ves according to. a smaILI_ THEORETICAL MODEL
parameter defined by the ratio of thermal penetration dept
to acoustic wavelength. A consequence of this ordering pro- The thermoacoustic system is described in terms of its
cedure is that the transverse component of the momentugeometry and boundary conditions, the general governing
equation may be ignored. The stability condition is then asequations are presented, and a set of reduced model equa-
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@) v faces are assumed to be rigid, and the boundary conditions
* on the particle velocity are thus
———— .
2w Uy=uy=0 on T and I'pjae. (4)
———i. For the temperature we set
20 aT
T [— %0 on Ten )
A _
=0 i =1 which is a statement that no heat flows to or from the ends of
the resonator. Along the plate we have
® ! Csym bz lu Ceym T=Ts on l_‘platev (6)
o C— T where T, is the local temperature of the solid. A second
plse condition along the plate relaté3/dy to heat flow into the
Tena Tena plate and diffusion within the plate. Sinéd/dy on I 4 iS
Taym a source term in the heat equation for the plate, it is intro-
o Tl -2 duced later in this context.

A thermoacoustic refrigerator requires an external

FIG. 1. (8 Geometry of engine with constant cross section and periodicsource of sound power. One means of supplying this power,
properties iry direction.(b) Computation region in rectangular coordinates. gnd especially simple to model, is vibration of the entire
resonator. This method of excitation is employed in some

tions is obtained using a small parameter defined by the ratithdustrial applications involving acoustical resonators used

of thermal penetration depth to acoustic wavelength. as pumps® The boundary conditions in Eqg3)—(6) remain
the same in a coordinate system attached to the moving reso-

nator, and one need only introduce an inertial body force in
A. Geometry and boundary conditions the equations of motion. If the resonator vibrates with accel-

The geometry of the thermoacoustic engine under Con(_erationa(t) along thex axis, the required components of the

sideration is shown in Fig.(&). A 2D geometry is used to b_ody force(per unit volumg on the gas in the moving coor-
eliminate variations in the direction, and the structure is dinate system are

assumed to be periodic in tlyedirection. The spatial period fy=—pa(t), f,=0. @

is the center-to-center distancg2between adjacent plates
of thickness % in a stack of lengttAx. A principal assump-
tion is that the length scales are related as follows:

It is this method of mechanical excitation that we consider in
the present paper.

Alternatively, one may wish to model excitation of the
W<y <l, (1) sound field by the motion of a piston at one efmd both
ends of the resonator. In this case, the resonator is at rest and

wherel is the length of the resonator. These conditions per-

mit considerable simplifications and reduction in computa—thus fx=f,=0. A moving piston in a stationary resonator

tion time. There is no restriction on the relation®% to I. constitutes a time-varying geometry that in turn requires a

We begin with the first inequalityw<y,, and further time-varying computation grid. To avoid this complication

assume that the plate thickness is negligible, such that it mag/ne can.approxu_'nate the exact deSCI‘.IptIOI’]. of the moving
be considered in the limit iston with a suitable boundary condition in a stationary
plane. The boundary condition in the stationary plane must

w—0. (20 be applied to momentum rather than velocity, i.pu,

Although small but finite plate thickness may be included, it = 9(!) a?th“y,: 0, V‘;hereg(t)l,rePLesems the oscillatory

introduces complexities that are better set aside for discudl'tion of the piston. If one applies the boundary condition to
sion elsewhere. On the basis of E@) and periodicity, the u, alone, a dc velocity component must be included to en-
computation region may be restricted to the narrow rectanSUré zero mass flow through the boundary. The dc flow re-

gular channel of lengthand widthy, that is shown in Fig. sults from defining oscillatory motion in fixed Eulerian
1(b). coordinates?

Hot and cold heat exchangers shall be modeled by im-
posing constant mean temperatures in the volume of gas out-

d¢ Jdu . .
¢ ZX 0,=0 on Tym, 3 side the stack:

ay " dy Tn=Th, OsX<Xy, ®
wherel'g, is the segment of the boundary designated by the
dashed lines in Fig.(b), ¢ is any of the scalar field variables
(pressuren, densityp, temperaturd), andu; are components whereT,, indicates the time average ©f andT, andT are
of the particle velocity vector. The solid surfaces of the resothe temperatures prescribed for the hot and cold sides, re-
nator are shown as solid lines in Figb}, labeled ad".,qfor ~ spectively. Implementation of these conditions is discussed
the ends of the resonator aiig, for the plate. These sur- in Secs. V and VI.

The boundary conditions imposed by symmetry are

=Te, Xes=xs=l, (9)
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Variation in the cross-sectional area of the resonaiot All coefficients in the preceding equations may vary as
depicted in Fig. 1is also taken into account. This modifica- functions of position or according to values of the local state
tion is postponed to Sec. IV, after the solution algorithm forvariables. For example, it is assumed in the calculations for
a resonator with constant cross section has been describedhe simulations presented in Secs. V and VI that the viscosity

and thermal conductivity of the gas depend on temperature.

B. Governing equations

The fluid satisfies the following conservation equationsc' Ordering scheme

for mass, momentum, and energy in an Eulerian coordinate Because of the large difference in length scales encoun-
system attached to the resonalor: tered in thermoacoustic engines, direct numerical integration
of the equations in Sec. IIB is exceedingly time intensive.

&_p+ M:o, (100  The small scale, in thg direction, is the pore sizg, in the
Jt IXi stack, which is the same order as the thermal penetration
apu;)  I(puiuy) ap oy depthé, in the gas. The Iargelscal'e, in tkelirection, is the
o + P iy o'?T+fi' (11 length | of the resonator, which is the same order as the
K : K acoustic wavelength at the fundamental natural frequency.
de d(etpu] 9 ( aT) a(Uoiy) We thus have
—t ———=— | k— |+ ————+fu;,
ot (9Xi &Xi (9Xi &Xk Yo~ 5!( , | ~N\. (17)
(12
These quantities may be used to estimate numerical step
where . . . i L
sizes required to satisfy stability criteria.
au;  du, 2 au, We begin by taking
Oik=m| ot o T g kg | T ey (13
k i ! ! 8. IN~yoll~103, (18)

is the viscous stress tensprthe shear viscosity,g the bulk
viscosity, §;, the Kronecker deltay the thermal conductivity,
f; the body force defined in Egé7), and

which is a nominal value for air at 1 kHhis ratio is pro-
portional to the square root of frequencyhe Courant sta-
bility conditions’® for the step sizes\x, Ay, and At are
e=3p(uj+u))+e (14  Ax/At>c andAy/At>c, wherec is the local value of the
sound speed. The latter condition is the more restrictive, and
taking Ay/y,~ 102 (for adequate resolution of the field be-
tween the platéswe obtain

the energy densityper unit volume. The fluid is assumed to
be an ideal gas, for which the internal eneeggnd equation
of state are related as

Ay A
2 1052
€=C,pT= _yfl' (195 At<-=~107 ¢ (19
wherey=c,/c, is the ratio of the specific heats andc, at on the basis of Eq$17) and(18). With \/c recognized to be
constant pressure and volume, respectively. comparable to the period of the acoustic oscillations at the

The motivation for expressing the left-hand sides of Eqs_fundgmental natural frequency of the resonator, stability thus
(10)—(12) in conservation-law form is that finite-difference équires on the order of ¥@amples per cycle of the acoustic
algorithms are available that guarantee conservation of th@aveform. _ _ N o
given quantities. Most important for our purposes is conser- A method for circumventing the stability condition in-
vation of the total mass and energy in the resonator, espdl€Y direction, to avoid severe oversampling of the acoustic
cially when steady-state conditions are of interest. Since th¥/aveform, is to simplify the governing equations by intro-
gas in the resonator is initially at rest, computations thaucing the small ordering parameter
extend over hundreds of acoustic periods are required before .5 /)~y /. (20)
all significant transient effects disappear.

The temperature distributiof in the plate is governed The relative ordering of the derivatives is thus

by J P 9

—=0(n"), - =0(n"), —-=0(7" (21)

0Ts o oTs| «dT g = 00r), 5x=00n), =001
PCs o T x| “Sax | “wayl. (16)
Fplate From Egs.(10) and(11) one obtains
wherepg andc, are the density and specific heat of the plate, Uy aplay
respectively, and is its thermal conductivity. Ng depen- 0.~ O, plax =0(n), (22
X

dence is taken into account by the diffusion term in &dp)
because the gradiedfT,/dy vanishes in the limit of zero which indicate that the fluid motion and pressure gradients
plate thickness. The second term on the right-hand side aare predominantly in the direction. The model equations
counts for heat exchange with the gas in contact with botlobtained on the basis of EQR1) and(22) permit reduction
sides of the plate. in computation time byO(#).
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D. Model equations Ill. SOLUTION ALGORITHM

order relations following from Eq410)—(16) are the values ofp, pu,, e, andT required to initiate the next
p Apuy)  a(puy) step. These quantities, in combination with E¢&7) and
AP AP (23 (28), provide the values ofi,, p, and T appearing on the
ot X ay right-hand sides of Eq$23)—(26). The remaining field vari-

) able,uy, is determined in the third substep by making use of
d(puy)  dlpuy) d(puxuy) w» ., i( %) Eq. (30) as described below.
at X ay ax  ay ® ay A splitting algorithm is used to integrate Eq23)—(26)
from time t, to time t,, ;=t+ At. Three substeps are em-
—pa(y), (24) ployed, one to account for variationsover time stepAt,
( (ﬂ_) and two to account for variations i over the same time

de__Jdl(etplud dl(erpuy] J

stepAt. Under the assumption of negligible plate thickness
gt Ix ay ay

w, the spatial domain shown in Fig(k) is the rectangular
region defined by &x=<I and Osy=<y,. All field variables
)—puxa(t), (25 exceptu, are evaluated on the grid(,y;) defined byx;
=(i—3)Ax andy;=(j —3)Ay, wherei,j=1,2,3.... The grid
(xi,y;r) for uy is shifted one half-step in thedirection, such
, (26)  thaty;,=j'Ay, wherej’=0,1,2....

“ay

a( Ju?
to—|u—
ay\" ady

N| =

ITe [ T «aT
PCsTo = x| Ko

w ay| .
plate A. First substep
where The equations for the first substep, frdeto k+ 1/3, are
L the ones obtained by omitting all terms wigtderivatives in
e=3pUste, (27)  Egs.(23—(26):
p ap d(puy)
=c,pT=—F. 28 —_— =
e=cpT=""g (28) - o (31)
Equationg23), (26), and(28) are unaltered. In Eq$24) and a(puy) J(pu2+p)
(25), only the higher-order loss ternfdepending onu and AP . pa(t), (32)

x) are omitted. In Eq(27), the contribution ofu, to the at X

kinetic energy is omitted. All boundary conditions in Sec. Je e+ )]

[ A remain the same. —=————"—pual(t), (33
The most noticeable omission is the engreomponent at 28

of the momentum equation. Only tihecomponent, Eq(24),

is retained. Because numerical solution of yfomponent is Ils _ 7

avoided, the stability condition is connected Ax rather gt psCs X

than Ay. The maximum time step indicated by EQ.9) is i )
thus reduced by several orders of magnitude. Equations (31)_(35’) are solved with a two-step Lax—
Justification for omitting they component of the mo- Wendroff schemé® Equation(34) can be solved with either

mentum equation follows from the smaliness of the pressur@n €XPlicit or semi-implicit scheme. The terminology semi-
gradientap/ay, as indicated by the second of E¢g2). The ~ IMPplicit is used because(T) is evaluated at stepin the
characteristic time required for the pressure to equilibrat@therwise implicit finite-difference equation for determining

across the channel in Fig(H) is the value ofT; at stepk+1/3. .
For clarity and future reference, we define

d¢
5(55

JTs 1 o[ dTs
Lo "

Ks7ox

te™=Yo/C~ 7\I/cC, (29

which is a factor ofy less than one acoustic period. On the Dn(d,4)= (39

basis of this observation, we impose the condition

n

_ to be the finite-difference operator involving the variabées
apldy=0 (30 and ¢. The formulation of this operator based on discretiza-

following each time ste@t in the solution algorithm. Equa- tion z,,, =2y +Az s

tion (30) is recognized as a principal component of Prandtl’s 1

boundary layer theory for incompressible fIE)T/_\As shown D (8,¢)= m[(éﬁﬁ 60) brs1— (8ns1+28,+ 64-1)

in Sec. Il C, combining Eq(30) with (25) permitsu, to be

determined from the energy equatio_n, rather than fromythe X ot (8y+ Sy_1) br_1]. (36)
component of the momentum equation. Equati@8—(28)

and (30) thus constitute a system of eight equations in eighttor example, the operator assumes the form
unknowns. Di(ksk,Tsk+13 in the scheme for solving Eq34).
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B. Second substep

The second substep, frok++1/3 to k+2/3, involves
solution of the equations

ﬁ(Pux)_ d duy

ge [ T +1 g ou? -
Aoy “ayl T2 ay\ Py ) (39
JTs k dT 39
ot PsCsWWF ’ 39

plate

where the terms on the right-hand sides are all terms which

were omitted in Eqs(31)—(34) except for those which de-
pend onu, . Equation(39) is a boundary condition in the
algorithm for solving Eq(38).

We begin with the algorithm for integrating E@7), the
semi-implicit finite-difference form of which is

(PU K+ 23= (PU k4 173+ Dj (s 173, Uy ks 219 At (40)
Now consider the solution of the associated equation

Dj(kir vz Tkt 280 At=B(Tis 23— Ticr 179)- (49

Now chooseB=c,p.1/3, Substitute Eq(49) in (47), use
Eq. (28) to write e=c,pT, and thus obtain

(50

We must still include the contribution due to viscosity in
Eqg. (39). It is sufficient to perform this calculation with an
explicit scheme, the result of which simply adds an energy
increment equal toﬁ-Dj(,L/,kH,g,uikHB)At. Including this
increment together with Eq50) in (46) yields

€k+ 2137 Cy P+ 1/3T k4213

12
€+ 2/3= (3PUy)k+ 13T CoPir 13Tkt 273

+3Dj( et 1/3’U>2<,k+ 13)At. (51)
This is the desired solution of E¢B8), whereT,, 53 is ob-
tained by solving Eq(49) with B=c,py+1/3-

C. Third substep

The third and final substep, frok+2/3 to k+1, re-
quires solution of the set

ap d(puy)
du, 9 [ auy a1 i —ayy : (52
Tt oy |\ Pay ) (41)
. . . . d(puy) a(Puxuy)
where B is a parameter. The corresponding discretized form a9 , (53
- y
of Eq. (41) is
d(pug) J(puZuy)
D (ks 1/3:Ux i+ 23) A= B(Uy k1 23~ Uy k+1/3)» (42) o7tx =_ ax ey (54)
substitution of which in Eq(40) yields y
de dl(e+p)u
(PUx)k+2/3= (Pk+ 13~ B)Ux k+ 1131 BUx k+ 273 (43 il [([?—;)y] (55)

ChoosingB=p\. 13 We arrive at the desired solution of Eq.
(37):
(PUx)k+2/3= Pk+ 173U k+ 213+ (44)

The velocity uy /3 iS obtained by solving Eq42) with

B=px+ 13-
A similar approach is followed to integrate E¢398).

which accounts for all remaining terms in Eq23)—(26).
Note that the energy terms have been separated int(GEQ.
for the kinetic energy and E@55) for the internal energy.
To proceed we need the value of, which is deter-
mined by applying the conditioap/dy=0 from Eq.(30) to
Eq. (55). Using the relatiore= p/(y— 1) we thus rewrite Eq.

Consider first the variation due to heat conduction. Sincd®d as

heat conduction contributes only to the change in internal

energy and not kinetic energy, we have from E@) and
(38)
de J

ey (45)

JT
KW .

The boundary conditions on the temperature are given by

Egs.(3), (5), (6), and(39). The total energy at step+2/3 is

12
€+ 23~ (3PUy) K+ 173t €kt 213, (46)

wheree, , 53 is obtained by solving the semi-implicit finite-
difference form of Eq(45):

€x+2/3= €k+ 131 Dj( Ky 173, T 22) At (47)

To obtain this solution consider the associated equation
JaT 9 JT

a5l <) “9

the finite-difference form of which is
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&p_

a(puy)  duy
at -

ay p&y’

where the second equality follows froap/dy=0, and the
implicit finite-difference form is

(56)

p{<+1— pL+2/3 _ i U{/,k+1_ U{/,k_+11
At k+1 Ay !
wherej’'=]j. We again invokedp/dy=0 by imposing the

—yp (57)

condition that at the end of the third substep, the pressure
equilibrates across the channel to the average of its value at

the beginning of the substep:

_ 1Yy
pk+15<pf<+2/3>j:N_2 Pkt 2131 (58)
yi=1
which is independent of and therefore of indek Here,N,
is the number of points in the direction, and(-); indicates
the average of a quantity across the channel. Equ&&@n
may now be rearranged as
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(a) ' is assumed to vary uniformly witlkk and to be given by

Y T ] 2yo(x)=2 X), whereyq, is a reference separation dis-
! vs () e tayrg)((:e) Yoos(X) Yoo p
/ ’ .y . ~
Lt We employ a curvilinear coordinate syste®,Y) de-
0 ] . fined by
1 ] X=x, Y=y/s(X), (61)
=0 T
e= y-(2) E\ such that the nonrectangular geometry in the Cartesian sys-
T tem (x,y) is mapped into a rectangular geometry. Constant
z=1 by . . . .
(b) 7 values ofx andy are displayed in Fig. (@) as vertical and
Loy Poym horizontal lines, respectively. As shown in the Appendix, the
e _.-F-u— _____________ corresponding transformation of Eq23)—(26) yields
plate
11en Fend (9~ Jd NTJ J ~T:| )
d 9P _ (p x)_ (pUy , 62)
Tsym at X ay
—————————————————————— - I
0 1 — ~—2 ——
d(ply) _ d(pUy a(puxuy) @ S_._.
FIG. 2. (a) Geometry of engine with varying cross section. The mesh dis- a IX a JS’( S P
plays constant values of the curvilinear coordinatesComputation region
in curvilinear coordinates. 19 Jy
I (e 3 DS
| s\ 4y A, (63)
T L Plezs | Ay - . S 5
e <p{(+2/3>j YAt (59) & E+DPIU] J(EF p)Uy] 10 ﬂ
L : . at X ay syl
which is the algorithm for calculating, across the channel.
Physically, it determines the transverse velocity required to 19 JU)Z( .
eliminate the transverse pressure gradients developed in the + 25 fy f“?y —pua(t), (64)
first two substeps.
The final pressure)!, (and therefore internal energy its 1 49 ITs PR
el ;) and transverse velocmy' Jk+1 are thus determined by ot p<Cs X Ks o T pLWS Y ' (65)
Egs. (58) and(59), respectlvely The final values of the den- Tplate

sity pk+1, momentum ()ux)kH, and Kkinetic energy gnq Jpldy=0, where

(zpux)k+1 are obtained from explicit finite-difference solu-

tions of Egs.(52), (53), and(54), respectively. P=sp, P=sp, ®=se T=T, T.=T,, (66)
The third substep ensures that the condidgphiy =0 is

maintained by the conservation equations. Transverse pre

sure gradients are generated mainly in thg second substep, Ty=uy, Ty= —(s’y/sz)ux+uy/s, (67)

and we therefore setp/dy=0 after completion of the sec-

ond sqbstep.. Asign'ificant transverse pressure gradientis also y =7, U, =SVl +ST,, (68)

established in the first substep, although only at the ends of

the stackx=xy, andx=xc. The procedure described for the where primes indicate derivatives. Equatid®) and (64)

third substep is thus applied twice, not only after the secon@re obtained from Eqg$23) and(25) without approximation.

substep, but also between the two half-steps in the Lax-A term involving dp/dy was ignored in Eq(63) on the basis

Wendroff scheme. of Eqg. (30), and Eq.(65) was simplified by ignoring terms of

relative ordery?. If the y dependence is ignored andifand

a(t) are set to zero, the linear forms of E¢62) and (63),

IV- VARIABLE CROSS SECTION combined with an equation of state, yield the Webster horn
We describe here the modifications in the algorithm re-equatioﬁ8 after the untransformed variables are reinstated.

quired to account for a resonator whose cross-sectional area To transform the boundary conditions it is necessary to

varies asS(x) =wy(x)w,, wherew,(x) is the varying width ~ consider how a varying cross section alters the geometry of

in they direction, andw, is a constant width in the direc-  the individual channels of widtliy(x). From Fig. Za) it is

tion. As shown in Fig. 2), the geometry is assumed to be clear that the channels are not identical. Instead, they vary

symmetric about the plang=0. The upper and lower with distance from the central axis of the resonator, and the

boundaries of the resonator are defined/by= + 3w,(x), or  structure is not periodic. However, the premise of our ap-

proach is that the area variati@(x) is gradual, such that

channels in the neighborhood of the central axis are similar

wheres(x) = S(x)/S, is a dimensionless are§; a reference and therefore reasonably periodic. In this case, solutions ob-

area, andwvy=Sy/w, a reference width in the direction.  tained for the central channel resemble closely the solutions

The separation distance between adjacent plates in the staftk neighboring channels. Computations are thus performed

and the particle velocity components are related according to

Y=+ 3WoS(X), (60)
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for the central channel alone, and the solutions are presumed dp, iwpm(Uy)
to be accurate throughout a central region of the resonator ;7= ~ -

containing many channels.

The computation region in transformed coordinates is

the central rectangular channel defined by3<| and 0

<Y=<yqo, as shown in Fig. ). As before, the ends of the

resonator are taken to be rigid in the pla¥esO, |. To an
accuracy consistent with the use of Ed$2)—(65), the
boundary conditions given by Eg&3)—(6) retain the same
form after transformation, specifically,

Jp Ty _

?y,Ty,UyZO on Fsym- (69)
U,=Ty=0 on T¢g and I'pjae, (70
aT

ﬁ=0 on Tgna (71

T=Ts on Tpae (72)

Equations(70) and (72) are exact. Although Eq469) are
exact along the central axig=0, they are not afy=yq.

11, PmA, (73
dx 1+eg memz
1 dT, f.—f ){u
+ = m ( K ,u.)< l> , (74)
Tm dx (1-Pr(1+e5)(1—f,)
where
tanH (1+i)yq/d, (o
= H( _ Yo ,,u], ES:Pm pyOfK, (75)
K (1+|)y0/5/<,,u pSCSW

Pr=cyu/k is the Prandtl numbeA is the complex accelera-
tion amplitude of the resonator, and the subsamphdicates

the local mearitime-averagepdvalue of a quantity. The ther-
mal and viscous penetration depths are defined &Qy
=5,/\Pr and 8,=\2ulwpy, respectively, andcp,
=+/yRT, is the small-signal adiabatic sound speed, where
R=c,—c,. We later employ the subscript 0 to indicate the
ambient value of a quantity when the gas is at rest and before

Errors in the transformed conditions at the upper boundarft temperature difference is imposed across the stack.

are associated with the absence of periodicity for a nonrect-

With A=0, elimination of{u,) in favor of p; in Egs.

. . 11 .
angular resonator. An accurate assessment of the errors -3 and (74) yields Eq.(54) of Swift,™ but with e; evalu-
quires an alternative form of solution, but an estimate may bé&t€d in the limit of negligible plate thickness compared with

made as follows. One may anticipate that E@9) differ

the thermal penetration depth in the solid. Equati@i® and

from the true field condition at the upper boundary by a(74 are obtained by averaging across the channel (ap
factor comparable to the cosine of the angle formed by théS thus a normalized volume velocity; see E(&2) and (73)

curvey=yy(x) and thex axis. This factor is approximately

[1—(dy/dx)?]Y2, wheredy/dx=yeS' ~Yoo!/l ~ 7. The er-
rors are thugd(#?) and may be ignored. Finally, E¢71)
follows from Eq. (5) by ignoring they term in the first of
Egs.(A2).

Equations(62)—(65) are solved using the algorithm de-

of Swift."! The dependence of;, and all other field variables
on y is determined by substituting the solution fpg in
explicit analytical expressior$.We note that the condition
dp1/dy=0, an assumption in our theoretical model, is also
an element of Rott’s theory.

Equations(73) and (74) were integrated numerically

scribed in Sec. 11, modified slightly to include the factors of With @ Runge—Kutta algorithm both inside and outside

s. The only new terms’P/s in Eq. (63), is included in the
first substep.

V. COMPARISON WITH LINEAR THEORY

(wheref, ,=0) the stack. The boundary conditions at the
ends of the stack are continuity pf and{u;), with (u;)

=0 at the ends of the resonator. An engine of constant cross
section is assumed, witlg/l =0.25, Axy/I =0.125, and
Yo/l=0.5x10"2. Properties of the gas are defined by
=1.67, P=0.67, andK/pococpI=10‘7, corresponding to

No suitable nonlinear theory is available as a benchmarlé, /y,=0.50 at resonance. The heat capacity of the stack is
for comparison with results obtained from the present modelchosen to be sufficiently large that<1.

However, the novel features of the solution algorithm con-

Power is supplied both thermally and mechanically. A

cern approximations introduced to efficiently yet accuratelymean temperatur€,(x) is imposed across the stack accord-
resolve the 2D structure of a field having considerably dif-ing to Egs.(8) and (9), with To=T,, Ty/Tc=1.5, and a
ferent length scales. The fact that the equations to be solvezbnstant gradient betweeg, andx.. This temperature gra-
are nonlinear presents no significant additional complicadient is insufficient to sustain acoustic oscillations. Instead,
tions, and therefore comparison with linear theory should behe oscillations are sustained by vibrating the resonator with
sufficient to assess the validity of the algorithm. The linearaxial displacement=Ze'“!, where 2/I=0.5x10 %, and

theory for thermoacoustic engines developed by Ratnd

wl/7mcy=1.0035 in steady state. The drive frequeney

Swift'! provides an appropriate benchmark for this purposematches the lowest natural frequency of the resor(aeter-

In the theory presented by Rd%2D equations of mo-

mined numericallyin the presence of the stack and tempera-

tion are reduced via analytical integrations to a 1D systenture gradient. Solutions of Eq&Z3) and(74) evaluated in the
that is integrated numerically. His result, including the exten-center of the stacks= Xy, yield the rms values of the axial

sion by Swift!

coupled equations for the complex acoustic presgyrand

axial particle velocity(u,) associated with time dependence

ei wt.
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may be expressed as the following pair of particle velocity(solid lineg and temperaturédashed lines

shown in Fig. 3.
The solution algorithm described in Sec. Ill was ex-
ecuted for the same conditions. Whereas E@3) and (74)
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= 0.002 [~ (T -Tn)/Ty X - é \
z L1} | 4
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-0.0004  -0.0002 0 0.0002 0.0004
09 1 1 | 1
0.006 T T T T T 0 200 400 600 800 1000
(b) N, =512 t/to
ug/co R,
g 0.004 |- R = FIG. 4. Onset of oscillations and transition to steady state in an engine with
T; constant cross section. Solid line is peak positive pressure in the waveform
E at the left end of the engine, dashed line is the corresponding peak negative
= 0.002 (T-Ta)/Ty Py, 4 pressure.
Sec. V except that the stack possesses a finite heat capacity
0 Fad | 1 1 1 1 . _ . _
00004 -0.0002 0 0.0002  0.0004 dgtermmed bypsCsW/ pmCpYo= 50, and the resonator is sta
y/l tionary, i.e.,a(t)=0.

To maintain the temperature distribution across the stack

FIG. 3. Comparison of computations obtained using the present algorithrﬂescribed by Egs(8) and (9) requires heat exchanae. For
(triangles with those obtained using the linear theory of R&ef. 10 and Yy Eq (8) ©) q ge.

Swift (Ref. 19 (lines) for the axial particle velocitysolid) and temperature simplicity, in the present exampb we model VIrtuaI hgat ex-

(dashed across a pore at the center of the stack. Two discretizations wer€hangers that occupy the entire volume of fluid outside the

used in the present algorithr(a) Nx=256; (b) N,=512. stack and present no resistance to the flow. Specifically, heat
Q is simply added to or subtracted from the gas at a rate

) ) . roportional to the deviation of the mean temperatlie
apply to steady state, the algorithm begins with the system Zﬁom the desired temperatufig, or T to the left or right of
rest. When the external drive is applied, the amplitude of the[ge stack, respectively:
acoustic oscillations increases until steady state is achieve
after a number of cycles corresponding to the quality factor Q= — K(Tm—Th.c)- (76)
of the system. For the given conditions, steady state wag
reached after about 300 cycles. Also, whereas the mean te
perature distributiom ,(x) could be regarded as an external

he constanK is chosen sufficiently large that, is main-
Bined reasonably close to the desired temperatures, but not

. A L so large that the sound field experiences significant attenua-
parameter m_the_ solutlon_of E_q@3) and(7_4), ItIs incorpo- tion. Equation(76) is included on the right-hand side of Eq.
rated as an initial condition in the solution algorithm. The

large heat capacity prescribed for the stack ensured that thig>) [Or alternatively,sQ is included on the right-hand side
distribution was maintained until steady state was achieveoc."c Eq. (64)] L
Results from the solution algorithm are presented as tri-  B€fore @ temperature drop is imposed across the stack,
angles in Fig. 3, withN, =256 evenly spaced steps for 0 (€ 9asis atrestand at uniform temperaflige pressurep,,
<x=l| in Fig. 3@, N,=512 in Fig. 3b). Discretization in and densityp,. At t=0 the temperature distribution de-
the transverse direction is the same for both calgs; 32 scribed by Egs(8) and(9) is introduced, with a linear tran-
steps for G=y=<vy,. The number of time samples per period, sition fromxy to X¢. For_ the engine u_nder cons!deratl_on,_the
N,, is increased in proportion t, in accordance with the critical te_mper_ature ratio above which acoustic oscillations
stability condition, withN,= 1024 andN,=2048 in the two are sustameo! SH [Te=2. Here,_we sety /TC:_Z'G’ where
cases under consideration. Further increasdljrprovides ¢~ To- Atthis instant, the ambient pressure in the resonator
increasingly better agreement with linear theory, while doul"créases by 20%, as indicated in Fig. 4t&t0. Finally, to
bling N, provides negligible improvement. We consider theiNitiate .th(_a acoustic oscnl_atlons, a _smaII _tllme—varylng distur-
quantitative agreement in Fig(i® to be sufficient for our Pance is introduced to trigger the instability.
purposes here and usg=512, N, =32, andN,= 2048 for . Figure 4 d!splays thg peak p05|t|(/gaolld line) and nega-
the calculations in Sec. VI. tive (dashed ling acoustic pressure in the waveform at
=0 as a function of time. An exponential increase in ampli-
tude associated with the thermoacoustic instability is ob-
served fort/ty<100, wheret, is the fundamental period of
VI. NONLINEAR EEFECTS the acoustic oscillations. Energy transfer to higher harmonics
provides sufficient losses for saturation to occurtét
We consider here the nonlinear response of a thermoa=100, and steady state is ultimately achieved fér,
coustic prime mover, beginning with the onset of the=300. Karpov and Prosperettilescribe a perturbation ap-
instability'® through to steady state. The geometry of the enproach, based on a nonlinear form of Rott’s 1D model, for
gine and the properties of the gas are the same as those imvestigating saturation of the thermoacoustic instability.
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FIG. 5. Resonator shapes associated with Fig. 6.

Comparison of the positive and negative acoustic pres- s
sures in Fig. 4 shows that the waveform is asymmetric, with
the negative phase having larger amplitude than the positive
phase. Asymmetry occurs when the natural frequencies of
the resonator are not integer multiples of one another. Be-
cause of viscous flow through the stack, the natural frequen-
cies depart from the valuasy,=nmcy/l for an empty cy-
lindrical resonator with rigid ends. -

One may selectively shift the natural frequencies by =
varying the cross section of the resonator. We thus consider ¢
resonator shape defined by

s(x)=1, 0=x/I=<0.5,

=exp{a[1l+cog2mx/1)]}, 0.5=x/I<1, (77)

which is depicted in Fig. 5 for several values of This
shape function was chosen because for an empty resonator
yields a simple relation for the shifiw, of the nth natural
frequency, specificall§ dw,/wqg;=— al4, and Sw,=0 for
n+ 1. When the resonator is driven at its lowest natural fre-
guency witha# 0, harmonics of the drive frequency typi-
cally do not coincide with other natural frequencies of the
resonator.

Shown in Fig. 6 are the waveformsyat 0 (solid lineg FIG. 6. Pressure waveforms at the lefolid lineg and right(dashed lings
andx=1 (dashed linesevaluated at/t,;=1000 for the reso- ends of the engines depicted in Fig. 5.
nator shapes in Fig. 5, with all other parameters the same as
in the calculations for Fig. 4. The cage=0 corresponds 2

. . .. . ) (y+1)7== _,

exac_tly to Fig. 4. The general trend is that the waveforms are  P,+25,P,+ w5P,= — — 7 P, (78
nominally U-shaped fora<—0.2 and V-shaped fora 0
>—0.2. Fora=—0.2, the resonator shape variation coun-wherew, is the natural frequency ang}, the damping coef-
teracts the natural frequency shifts introduced by the stack ificient of moden. Thermoacoustic generation of sound oc-
such a way thatw,=2w;, which provides phase-matching curs mainly in the fundamental mode at the corresponding
conditions for the fundamental and second harmonic compamatural frequency, so we take, =P, cosw;t. At x=0 we
nents. Nonlinear distortion is most pronounced in this situahave ¢,~=1, p(t)=P;+ P,, and thus from Eq(78)
tion, and the amplitude is reduced on account of losses at the A
shocks. - p=PyCoSw t+ ——C0S 2wit, 2w;>w,, (79

The transition from U-shaped to V-shaped waveforms 4]
can be explained with a simple model. Let the sound pres-
sures in the fundamental and second modes e =P, COSw t—
=P,(t) p,(X), whereg, are the normal-mode functions pre-
dicted by linear theory. We assume small perturbations of the A
mode shapes due to shape variations and other effects, such =P C0Sw t——C0S 2w t, 2w;<w,, (82)
that ¢,=cosfimx/l) for a resonator with rigid ends. If the @2
resonator is excited in its fundamental mode, then from Eqwhere A= (y+1)7?P3/2pol?>. The casesa<-—0.2, a
(90) in Ref. 20 one obtains the following relation for the =—0.2, anda>—0.2 correspond to Eq<79), (80), and
lowest-order nonlinear interaction producing sound in theg81), respectively. Indeed, the waveform described by Eq.
second mode: (79) is U-shaped, and by E¢81) is V-shaped. The difference

/o

t/to

20rd; sin2wt, 2w;=w,, (80)
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is due to therw radians phase shift of the second harmonic, U =Ty, Uy=sYl,+ST. (A7)
corresponding to the response of a simple harmonic oscilla-

tor driven above or below its natural frequency. Equation! hex component of the particle velocity is thus the same in
(80) reveals waveform steepening consistent with the casBoth coordinate systems. From E¢A3) and(A4) we obtain
a=—0.2, for which positive acoustic pressures advance ofthe desired relation

negative pressures. Adu) 1 a(sdti)

X S Jy(i '

(A8)
VIl. CONCLUSION

The proposed theoretical model should prove useful fopvhich permits direct transformation of the divergence ap-

investigating fundamental physical processes and especialRfearlng n the c_onservatlor_] equatlons._
nonlinear effects in thermoacoustic engines. The solution al- We begin _W'th the continuity equation, E@3), and use
gorithm makes it possible to simulate complex phenomengq' (A8) to write
throughout the entire resonator and stack within reasonable a(pu;) 1 9(spl;)
computation times, yet without sacrificing spatial resolution. —=— =—=
For example, detailed circulatory structures of acoustic
streaming patterns generated inside the stack and extendingtroduction of the transformed densify=Jp=sp permits
into the volume of the resonator have been described witlEq. (A9) to be written as
this model! These and other results provide subjects for
future investigations. dp (Pl

ot %

ot X S ﬂi (Ag)

(A10)
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APPENDIX: CURVILINEAR COORDINATES (ALD)

Here, we rewrite the reduced Eq23)—(26) in the cur- From Eq.(A8) we have
vilinear coordinate system given by Ed81): apuu) 1 a(spudiy) 1 a(puT)

X=X, Y=y/s(X). (A1) X s a s ax (AL2)
Derivatives are transformed according to where the second equality follows frofin=sp andU,=u,.

) a sy 4 i 14 2 Equation(A1l) thus becomes

ax dx s dy' dy sy’ a(pUy) (BT  ap . 14/ duy) _ t
wheres’ =ds/dx=ds/d%. Note that each of Eq$23)—(25) o IXi Sox Tsay\ My pa(y),
contains a divergence in the fora¢V,)/dx;, where is a (AL13)

scalar function and/; a vector. A useful property for arbi-
trary coordinate systems, not necessarily orthogonal, is th#
the following quantity is invariant?

here the viscosity term was transformed via Hg). For
e pressure term we have, from E¢a2),

1 9(JV,) p_ dp ,_dp Ip

JT, (A3) s&=sﬁ—s y?y:s§, (A14)
I
whereJ is the Jacobian, which for the transformation in Eq.Where the approximation results from taking E§0) into
(A1) is account and settingp/ ¥ =0. Lettingp=sp, substitution of
Eqg. (Al14) into (A13) yields
axy) |1 0 - o
Ty |8y s ° (Ad) F) _ 0@UT) 9 S L9 Ty
_ _ _ _ t % & sP T sw\ M
Now letV; designate the particle velocity, the transformation
of which between the rectangular and curvilinear coordinates —pa(t). (A15)

is . . .
No transformation of the resonator acceleratafn) is re-

U= (X /axpuy,  up=(ax;/d%)T;, (A5)  quired because it is a kinematic quantity with a component in
only thex=X direction.
The procedure for transforming the energy equation, Eq.
Tmu . T—— s'y Ut Eu (A6) (25), is no different from that just described for the momen-
XT U By g X gty tum equation, and therefore we merely present the result:

and from Eqg.(Al) we have
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F Pl 1 9T 1 a9 g
O R AR I AL
—pu,a(t), (A16)

whereg=seandT=T.
In place of Eq.(26), the heat equation for the plate is

JTq a( 0T3> Kk dT

P~ oz "oz | T wan
where { is a coordinate along the plaige., following a
curvey=cons}, andn is a coordinate normal to the plate.
Transformation of the derivatives yields

, (A17)

plate

r

J 1 J

R A18
i 1+ (sy)2 K (A18)
P 14 sy 9

NN v A S A19
o (s'V)%5 N (A19)

For plates near the center of the resonator we Ravg,,
such thats'y=0(#) [recall Eq.(20)]. Also, d/d%X is O(7)

relative to /4y [recall Eq.(21)]. With T=Ts, Eq. (A17)
thus becomes

when terms of0(#?) are ignored.

Kk JT
ws 5y

aTs
K%

iTs 0

PCs = = (A20)

r

plate
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Electrolyte ions moving in a magnetic field produce a velocity component transverse to the electric
and magnetic fields. This phenomenon can be alternatively termed as the Hall effect, a
magnetohydrodynamic transducer, or a liquid-state electromagnetic transducer. In electrolytes, the
viscous drag of the electrolyte fluid is dominant, so the ion deflection soon reaches a terminal
velocity dependent only on the electric field strength. The alternating velocity component transverse
to the electric and magnetic fields produces a pressure wave due to the viscous drag of the fluid on
the ions. Acoustic waves of very hig